Abstract
Some recent work by philosophers of mathematics has been aimed at showing that our knowledge of the existence of at least some mathematical objects and/or sets can be epistemically grounded by appealing to perceptual experience. The sensory capacity that they refer to in doing so is the ability to perceive numbers, mathematical properties and/or sets. The chief defense of this view as it applies to the perception of sets is found in Penelope Maddy’s Realism in Mathematics, but a number of other philosophers have made similar, if more simple, appeals of this sort. For example, Jaegwon Kim (1981, 1982), John Bigelow (1988, 1990), and John Bigelow and Robert Pargetter (1990) have all defended such views. The main critical issue that will be raised here concerns the coherence of the notions of set perception and mathematical perception, and whether appeals to such perceptual faculties can really provide any justification for or explanation of belief in the existence of sets, mathematical properties and/or numbers.