View topic on PhilPapers for more information
Related categories

13 found
Order:
More results on PhilPapers
  1. added 2020-08-26
    The Limits of Classical Mereology: Mixed Fusions and the Failures of Mereological Hybridism.Joshua Kelleher - 2020 - Dissertation, The University of Queensland
    In this thesis I argue against unrestricted mereological hybridism, the view that there are absolutely no constraints on wholes having parts from many different logical or ontological categories, an exemplar of which I take to be ‘mixed fusions’. These are composite entities which have parts from at least two different categories – the membered (as in classes) and the non-membered (as in individuals). As a result, mixed fusions can also be understood to represent a variety of cross-category summation such as (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. added 2020-01-03
    Considerações de Brouwer sobre espaço e infinitude: O idealismo de Brouwer Diante do Problema Apresentado por Dummett Quanto à Possibilidade Teórica de uma Infinitude Espacial.Paulo Júnio de Oliveira - 2019 - Kinesis:94-108.
    Resumo Neste artigo, será discutida a noção de “infinitude cardinal” – a qual seria predicada de um “conjunto” – e a noção de “infinitude ordinal” – a qual seria predicada de um “processo”. A partir dessa distinção conceitual, será abordado o principal problema desse artigo, i.e., o problema da possibilidade teórica de uma infinitude de estrelas tratado por Dummett em sua obra Elements of Intuitionism. O filósofo inglês sugere que, mesmo diante dessa possibilidade teórica, deveria ser possível predicar apenas infinitude (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  3. added 2019-12-05
    Twist-Valued Models for Three-Valued Paraconsistent Set Theory.Walter Carnielli & Marcelo E. Coniglio - manuscript
    Boolean-valued models of set theory were independently introduced by Scott, Solovay and Vopěnka in 1965, offering a natural and rich alternative for describing forcing. The original method was adapted by Takeuti, Titani, Kozawa and Ozawa to lattice-valued models of set theory. After this, Löwe and Tarafder proposed a class of algebras based on a certain kind of implication which satisfy several axioms of ZF. From this class, they found a specific 3-valued model called PS3 which satisfies all the axioms of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  4. added 2019-01-07
    Some Recent Existential Appeals to Mathematical Experience.Michael J. Shaffer - 2006 - Principia: An International Journal of Epistemology 10 (2):143-170.
    Some recent work by philosophers of mathematics has been aimed at showing that our knowledge of the existence of at least some mathematical objects and/or sets can be epistemically grounded by appealing to perceptual experience. The sensory capacity that they refer to in doing so is the ability to perceive numbers, mathematical properties and/or sets. The chief defense of this view as it applies to the perception of sets is found in Penelope Maddy’s Realism in Mathematics, but a number of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. added 2018-01-10
    The Search for New Axioms in the Hyperuniverse Programme.Claudio Ternullo & Sy-David Friedman - 2016 - In Andrea Sereni & Francesca Boccuni (eds.), Objectivity, Realism, and Proof. FilMat Studies in the Philosophy of Mathematics. Berlin: Springer. pp. 165-188.
    The Hyperuniverse Programme, introduced in Arrigoni and Friedman (2013), fosters the search for new set-theoretic axioms. In this paper, we present the procedure envisaged by the programme to find new axioms and the conceptual framework behind it. The procedure comes in several steps. Intrinsically motivated axioms are those statements which are suggested by the standard concept of set, i.e. the `maximal iterative concept', and the programme identi fies higher-order statements motivated by the maximal iterative concept. The satisfaction of these statements (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  6. added 2017-11-28
    What We Talk About When We Talk About Numbers.Richard Pettigrew - 2018 - Annals of Pure and Applied Logic 169 (12):1437-1456.
    In this paper, I describe and motivate a new species of mathematical structuralism, which I call Instrumental Nominalism about Set-Theoretic Structuralism. As the name suggests, this approach takes standard Set-Theoretic Structuralism of the sort championed by Bourbaki and removes its ontological commitments by taking an instrumental nominalist approach to that ontology of the sort described by Joseph Melia and Gideon Rosen. I argue that this avoids all of the problems that plague other versions of structuralism.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  7. added 2016-09-02
    Tiny Proper Classes.Laureano Luna - 2016 - The Reasoner 10 (10):83-83.
    We propose certain clases that seem unable to form a completed totality though they are very small, finite, in fact. We suggest that the existence of such clases lends support to an interpretation of the existence of proper clases in terms of availability, not size.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  8. added 2015-09-29
    Gödel’s Cantorianism.Claudio Ternullo - 2015 - In Eva-Maria Engelen & Gabriella Crocco (eds.), Kurt Gödel: Philosopher-Scientist. Presses Universitaires de Provence. pp. 417-446.
    Gödel’s philosophical conceptions bear striking similarities to Cantor’s. Although there is no conclusive evidence that Gödel deliberately used or adhered to Cantor’s views, one can successfully reconstruct and see his “Cantorianism” at work in many parts of his thought. In this paper, I aim to describe the most prominent conceptual intersections between Cantor’s and Gödel’s thought, particularly on such matters as the nature and existence of mathematical entities (sets), concepts, Platonism, the Absolute Infinite, the progress and inexhaustibility of mathematics.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  9. added 2014-12-17
    Maximally Consistent Sets of Instances of Naive Comprehension.Luca Incurvati & Julien Murzi - 2017 - Mind 126 (502).
    Paul Horwich (1990) once suggested restricting the T-Schema to the maximally consistent set of its instances. But Vann McGee (1992) proved that there are multiple incompatible such sets, none of which, given minimal assumptions, is recursively axiomatizable. The analogous view for set theory---that Naïve Comprehension should be restricted according to consistency maxims---has recently been defended by Laurence Goldstein (2006; 2013). It can be traced back to W.V.O. Quine(1951), who held that Naïve Comprehension embodies the only really intuitive conception of set (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  10. added 2013-03-19
    Three Concepts of Decidability for General Subsets of Uncountable Spaces.Matthew W. Parker - 2003 - Theoretical Computer Science 351 (1):2-13.
    There is no uniquely standard concept of an effectively decidable set of real numbers or real n-tuples. Here we consider three notions: decidability up to measure zero [M.W. Parker, Undecidability in Rn: Riddled basins, the KAM tori, and the stability of the solar system, Phil. Sci. 70(2) (2003) 359–382], which we abbreviate d.m.z.; recursive approximability [or r.a.; K.-I. Ko, Complexity Theory of Real Functions, Birkhäuser, Boston, 1991]; and decidability ignoring boundaries [d.i.b.; W.C. Myrvold, The decision problem for entanglement, in: R.S. (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  11. added 2012-10-18
    To Be or to Be Not, That is the Dilemma.Juan José Luetich - 2012 - Identification Transactions of The Luventicus Academy (ISSN 1666-7581) 1 (1):4.
    A set is precisely defined. A given element either belongs or not to a set. However, since all of the elements being considered belong to the universe, if the element does not belong to the set, it belongs to its complement, that is, what remains after all of the elements from the set are removed from the universe.
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  12. added 2012-09-12
    A Taxonomy of Composition Operations.Jan Westerhoff - 2004 - Logique and Analyse 2004 (47):375-393.
    A set of parameters for classifying composition operations is introduced. These parameters determine whether a composition operation is 1) universal, 2) determinate, 3) whether there is a difference between possible and actual compositions, 4) whether there can be singleton compositions, 5) whether they give rise to a hierarchy, and 6) whether components of compositions can be repeated. Philosophical implications of these parameters (in particular in relation to set theory) and mereology are discussed.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  13. added 2011-03-17
    Individuals Enough for Classes.Daniel Nolan - manuscript
    This paper builds on the system of David Lewis’s “Parts of Classes” to provide a foundation for mathematics that arguably requires not only no distinctively mathematical ideological commitments (in the sense of Quine), but also no distinctively mathematical ontological commitments. Provided only that there are enough individual atoms, the devices of plural quantification and mereology can be employed to simulate quantification over classes, while at the same time allowing all of the atoms (and most of their fusions with which we (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation