Abstract
Carl Hempel (1965) argued that probabilistic hypotheses are limited in what they can explain. He contended that a hypothesis cannot explain why E is true if the hypothesis says that E has a probability less than 0.5. Wesley Salmon (1971, 1984, 1990, 1998) and Richard Jeffrey (1969) argued to the contrary, contending that P can explain why E is true even when P says that E’s probability is very low. This debate concerned noncontrastive explananda. Here, a view of contrastive causal explanation is described and defended. It provides a new limit on what probabilistic hypotheses can explain; the limitation is that P cannot explain why E is true rather than A if P assign E a probability that is less than or equal to the probability that P assigns to A. The view entails that a true deterministic theory and a true probabilistic theory that apply to the same explanandum partition are such that the deterministic theory explains all the true contrastive propositions constructable from that partition, whereas the probabilistic theory often fails to do so.