The article is a plea for ethicists to regard probability as one of their most important concerns. It outlines a series of topics of central importance in ethical theory in which probability is implicated, often in a surprisingly deep way, and lists a number of open problems. Topics covered include: interpretations of probability in ethical contexts; the evaluative and normative significance of risk or uncertainty; uses and abuses of expected utility theory; veils of ignorance; Harsanyi’s aggregation theorem; (...) population size problems; equality; fairness; giving priority to the worse off; continuity; incommensurability; nonexpected utility theory; evaluative measurement; aggregation; causal and evidential decision theory; act consequentialism; rule consequentialism; and deontology. (shrink)
This paper motivates and develops a novel semantic framework for deontic modals. The framework is designed to shed light on two things: the relationship between deontic modals and substantive theories of practical rationality and the interaction of deontic modals with conditionals, epistemic modals and probability operators. I argue that, in order to model inferential connections between deontic modals and probability operators, we need more structure than is provided by classical intensional theories. In particular, we need probabilistic structure that (...) interacts directly with the compositional semantics of deontic modals. However, I reject theories that provide this probabilistic structure by claiming that the semantics of deontic modals is linked to the Bayesian notion of expectation. I offer a probabilistic premise semantics that explains all the data that create trouble for the rival theories. (shrink)
In this study we investigate the influence of reason-relation readings of indicative conditionals and ‘and’/‘but’/‘therefore’ sentences on various cognitive assessments. According to the Frege-Grice tradition, a dissociation is expected. Specifically, differences in the reason-relation reading of these sentences should affect participants’ evaluations of their acceptability but not of their truth value. In two experiments we tested this assumption by introducing a relevance manipulation into the truth-table task as well as in other tasks assessing the participants’ acceptability and probability evaluations. (...) Across the two experiments a strong dissociation was found. The reason-relation reading of all four sentences strongly affected their probability and acceptability evaluations, but hardly affected their respective truth evaluations. Implications of this result for recent work on indicative conditionals are discussed. (shrink)
This book explores a question central to philosophy--namely, what does it take for a belief to be justified or rational? According to a widespread view, whether one has justification for believing a proposition is determined by how probable that proposition is, given one's evidence. In this book this view is rejected and replaced with another: in order for one to have justification for believing a proposition, one's evidence must normically support it--roughly, one's evidence must make the falsity of that proposition (...) abnormal in the sense of calling for special, independent explanation. This conception of justification bears upon a range of topics in epistemology and beyond. Ultimately, this way of looking at justification guides us to a new, unfamiliar picture of how we should respond to our evidence and manage our own fallibility. This picture is developed here. (shrink)
Many philosophers argue that Keynes’s concept of the “weight of arguments” is an important aspect of argument appraisal. The weight of an argument is the quantity of relevant evidence cited in the premises. However, this dimension of argumentation does not have a received method for formalisation. Kyburg has suggested a measure of weight that uses the degree of imprecision in his system of “Evidential Probability” to quantify weight. I develop and defend this approach to measuring weight. I illustrate the (...) usefulness of this measure by employing it to develop an answer to Popper’s Paradox of Ideal Evidence. (shrink)
The major competing statistical paradigms share a common remarkable but unremarked thread: in many of their inferential applications, different probability interpretations are combined. How this plays out in different theories of inference depends on the type of question asked. We distinguish four question types: confirmation, evidence, decision, and prediction. We show that Bayesian confirmation theory mixes what are intuitively “subjective” and “objective” interpretations of probability, whereas the likelihood-based account of evidence melds three conceptions of what constitutes an “objective” (...)probability. (shrink)
We provide a 'verisimilitudinarian' analysis of the well-known Linda paradox or conjunction fallacy, i.e., the fact that most people judge the probability of the conjunctive statement "Linda is a bank teller and is active in the feminist movement" (B & F) as more probable than the isolated statement "Linda is a bank teller" (B), contrary to an uncontroversial principle of probability theory. The basic idea is that experimental participants may judge B & F a better hypothesis about Linda (...) as compared to B because they evaluate B & F as more verisimilar than B. In fact, the hypothesis "feminist bank teller", while less likely to be true than "bank teller", may well be a better approximation to the truth about Linda. (shrink)
Modern scientific cosmology pushes the boundaries of knowledge and the knowable. This is prompting questions on the nature of scientific knowledge. A central issue is what defines a 'good' model. When addressing global properties of the Universe or its initial state this becomes a particularly pressing issue. How to assess the probability of the Universe as a whole is empirically ambiguous, since we can examine only part of a single realisation of the system under investigation: at some point, data (...) will run out. We review the basics of applying Bayesian statistical explanation to the Universe as a whole. We argue that a conventional Bayesian approach to model inference generally fails in such circumstances, and cannot resolve, e.g., the so-called 'measure problem' in inflationary cosmology. Implicit and non-empirical valuations inevitably enter model assessment in these cases. This undermines the possibility to perform Bayesian model comparison. One must therefore either stay silent, or pursue a more general form of systematic and rational model assessment. We outline a generalised axiological Bayesian model inference framework, based on mathematical lattices. This extends inference based on empirical data (evidence) to additionally consider the properties of model structure (elegance) and model possibility space (beneficence). We propose this as a natural and theoretically well-motivated framework for introducing an explicit, rational approach to theoretical model prejudice and inference beyond data. (shrink)
This paper defends David Hume's "Of Miracles" from John Earman's (2000) Bayesian attack by showing that Earman misrepresents Hume's argument against believing in miracles and misunderstands Hume's epistemology of probable belief. It argues, moreover, that Hume's account of evidence is fundamentally non-mathematical and thus cannot be properly represented in a Bayesian framework. Hume's account of probability is show to be consistent with a long and laudable tradition of evidential reasoning going back to ancient Roman law.
When probability discounting (or probability weighting), one multiplies the value of an outcome by one's subjective probability that the outcome will obtain in decision-making. The broader import of defending probability discounting is to help justify cost-benefit analyses in contexts such as climate change. This chapter defends probability discounting under risk both negatively, from arguments by Simon Caney (2008, 2009), and with a new positive argument. First, in responding to Caney, I argue that small costs and (...) benefits need to be evaluated, and that viewing practices at the social level is too coarse-grained. Second, I argue for probability discounting, using a distinction between causal responsibility and moral responsibility. Moral responsibility can be cashed out in terms of blameworthiness and praiseworthiness, while causal responsibility obtains in full for any effect which is part of a causal chain linked to one's act. With this distinction in hand, unlike causal responsibility, moral responsibility can be seen as coming in degrees. My argument is, given that we can limit our deliberation and consideration to that which we are morally responsible for and that our moral responsibility for outcomes is limited by our subjective probabilities, our subjective probabilities can ground probability discounting. (shrink)
There is a plethora of confirmation measures in the literature. Zalabardo considers four such measures: PD, PR, LD, and LR. He argues for LR and against each of PD, PR, and LD. First, he argues that PR is the better of the two probability measures. Next, he argues that LR is the better of the two likelihood measures. Finally, he argues that LR is superior to PR. I set aside LD and focus on the trio of PD, PR, and (...) LR. The question I address is whether Zalabardo succeeds in showing that LR is superior to each of PD and PR. I argue that the answer is negative. I also argue, though, that measures such as PD and PR, on one hand, and measures such as LR, on the other hand, are naturally understood as explications of distinct senses of confirmation. (shrink)
A definition of causation as probability-raising is threatened by two kinds of counterexample: first, when a cause lowers the probability of its effect; and second, when the probability of an effect is raised by a non-cause. In this paper, I present an account that deals successfully with problem cases of both these kinds. In doing so, I also explore some novel implications of incorporating into the metaphysical investigation considerations of causal psychology.
This paper is a response to Tyler Wunder’s ‘The modality of theism and probabilistic natural theology: a tension in Alvin Plantinga's philosophy’ (this journal). In his article, Wunder argues that if the proponent of the Evolutionary Argument Against Naturalism (EAAN) holds theism to be non-contingent and frames the argument in terms of objective probability, that the EAAN is either unsound or theism is necessarily false. I argue that a modest revision of the EAAN renders Wunder’s objection irrelevant, and that (...) this revision actually widens the scope of the argument. (shrink)
A probability distribution is regular if no possible event is assigned probability zero. While some hold that probabilities should always be regular, three counter-arguments have been posed based on examples where, if regularity holds, then perfectly similar events must have different probabilities. Howson (2017) and Benci et al. (2016) have raised technical objections to these symmetry arguments, but we see here that their objections fail. Howson says that Williamson’s (2007) “isomorphic” events are not in fact isomorphic, but Howson (...) is speaking of set-theoretic representations of events in a probability model. While those sets are not isomorphic, Williamson’s physical events are, in the relevant sense. Benci et al. claim that all three arguments rest on a conflation of different models, but they do not. They are founded on the premise that similar events should have the same probability in the same model, or in one case, on the assumption that a single rotation-invariant distribution is possible. Having failed to refute the symmetry arguments on such technical grounds, one could deny their implicit premises, which is a heavy cost, or adopt varying degrees of instrumentalism or pluralism about regularity, but that would not serve the project of accurately modelling chances. (shrink)
We generalize the Kolmogorov axioms for probability calculus to obtain conditions defining, for any given logic, a class of probability functions relative to that logic, coinciding with the standard probability functions in the special case of classical logic but allowing consideration of other classes of "essentially Kolmogorovian" probability functions relative to other logics. We take a broad view of the Bayesian approach as dictating inter alia that from the perspective of a given logic, rational degrees of (...) belief are those representable by probability functions from the class appropriate to that logic. Classical Bayesianism, which fixes the logic as classical logic, is only one version of this general approach. Another, which we call Intuitionistic Bayesianism, selects intuitionistic logic as the preferred logic and the associated class of probability functions as the right class of candidate representions of epistemic states (rational allocations of degrees of belief). Various objections to classical Bayesianism are, we argue, best met by passing to intuitionistic Bayesianism—in which the probability functions are taken relative to intuitionistic logic—rather than by adopting a radically non-Kolmogorovian, for example, nonadditive, conception of (or substitute for) probability functions, in spite of the popularity of the latter response among those who have raised these objections. The interest of intuitionistic Bayesianism is further enhanced by the availability of a Dutch Book argument justifying the selection of intuitionistic probability functions as guides to rational betting behavior when due consideration is paid to the fact that bets are settled only when/if the outcome bet on becomes known. (shrink)
NOTE: This paper is a reworking of some aspects of an earlier paper – ‘What else justification could be’ and also an early draft of chapter 2 of Between Probability and Certainty. I'm leaving it online as it has a couple of citations and there is some material here which didn't make it into the book (and which I may yet try to explore elsewhere). -/- My concern in this paper is with a certain, pervasive picture of epistemic justification. (...) On this picture, acquiring justification for believing something is essentially a matter of minimising one’s risk of error – so one is justified in believing something just in case it is sufficiently likely, given one’s evidence, to be true. This view is motivated by an admittedly natural thought: If we want to be fallibilists about justification then we shouldn’t demand that something be certain – that we completely eliminate error risk – before we can be justified in believing it. But if justification does not require the complete elimination of error risk, then what could it possibly require if not its minimisation? If justification does not require epistemic certainty then what could it possibly require if not epistemic likelihood? When all is said and done, I’m not sure that I can offer satisfactory answers to these questions – but I will attempt to trace out some possible answers here. The alternative picture that I’ll outline makes use of a notion of normalcy that I take to be irreducible to notions of statistical frequency or predominance. (shrink)
Leibniz’s account of probability has come into better focus over the past decades. However, less attention has been paid to a certain domain of application of that account, that is, the application of it to the moral or ethical domain—the sphere of action, choice and practice. This is significant, as Leibniz had some things to say about applying probability theory to the moral domain, and thought the matter quite relevant. Leibniz’s work in this area is conducted at a (...) high level of abstraction. It establishes a proof of concept, rather than concrete guidelines for how to apply calculations to specific cases. Still, this highly abstract material does allow us to begin to construct a framework for thinking about Leibniz’s approach to the ethical side of probability. (shrink)
Dutch Book arguments have been presented for static belief systems and for belief change by conditionalization. An argument is given here that a rule for belief change which under certain conditions violates probability kinematics will leave the agent open to a Dutch Book.
How were reliable predictions made before Pascal and Fermat's discovery of the mathematics of probability in 1654? What methods in law, science, commerce, philosophy, and logic helped us to get at the truth in cases where certainty was not attainable? The book examines how judges, witch inquisitors, and juries evaluated evidence; how scientists weighed reasons for and against scientific theories; and how merchants counted shipwrecks to determine insurance rates. Also included are the problem of induction before Hume, design arguments (...) for the existence of God, and theories on how to evaluate scientific and historical hypotheses. It is explained how Pascal and Fermat's work on chance arose out of legal thought on aleatory contracts. The book interprets pre-Pascalian unquantified probability in a generally objective Bayesian or logical probabilist sense. (shrink)
There are many scientific and everyday cases where each of Pr and Pr is high and it seems that Pr is high. But high probability is not transitive and so it might be in such cases that each of Pr and Pr is high and in fact Pr is not high. There is no issue in the special case where the following condition, which I call “C1”, holds: H 1 entails H 2. This condition is sufficient for transitivity in (...) high probability. But many of the scientific and everyday cases referred to above are cases where it is not the case that H 1 entails H 2. I consider whether there are additional conditions sufficient for transitivity in high probability. I consider three candidate conditions. I call them “C2”, “C3”, and “C2&3”. I argue that C2&3, but neither C2 nor C3, is sufficient for transitivity in high probability. I then set out some further results and relate the discussion to the Bayesian requirement of coherence. (shrink)
This paper argues that the technical notion of conditional probability, as given by the ratio analysis, is unsuitable for dealing with our pretheoretical and intuitive understanding of both conditionality and probability. This is an ontological account of conditionals that include an irreducible dispositional connection between the antecedent and consequent conditions and where the conditional has to be treated as an indivisible whole rather than compositional. The relevant type of conditionality is found in some well-defined group of conditional statements. (...) As an alternative, therefore, we briefly offer grounds for what we would call an ontological reading: for both conditionality and conditional probability in general. It is not offered as a fully developed theory of conditionality but can be used, we claim, to explain why calculations according to the RATIO scheme does not coincide with our intuitive notion of conditional probability. What it shows us is that for an understanding of the whole range of conditionals we will need what John Heil (2003), in response to Quine (1953), calls an ontological point of view. (shrink)
In the following we will investigate whether von Mises’ frequency interpretation of probability can be modified to make it philosophically acceptable. We will reject certain elements of von Mises’ theory, but retain others. In the interpretation we propose we do not use von Mises’ often criticized ‘infinite collectives’ but we retain two essential claims of his interpretation, stating that probability can only be defined for events that can be repeated in similar conditions, and that exhibit frequency stabilization. The (...) central idea of the present article is that the mentioned ‘conditions’ should be well-defined and ‘partitioned’. More precisely, we will divide probabilistic systems into object, initializing, and probing subsystem, and show that such partitioning allows to solve problems. Moreover we will argue that a key idea of the Copenhagen interpretation of quantum mechanics (the determinant role of the observing system) can be seen as deriving from an analytic definition of probability as frequency. Thus a secondary aim of the article is to illustrate the virtues of analytic definition of concepts, consisting of making explicit what is implicit. (shrink)
This dissertation is a contribution to formal and computational philosophy. -/- In the first part, we show that by exploiting the parallels between large, yet finite lotteries on the one hand and countably infinite lotteries on the other, we gain insights in the foundations of probability theory as well as in epistemology. Case 1: Infinite lotteries. We discuss how the concept of a fair finite lottery can best be extended to denumerably infinite lotteries. The solution boils down to the (...) introduction of infinitesimal probability values, which can be achieved using non-standard analysis. Our solution can be generalized to uncountable sample spaces, giving rise to a Non-Archimedean Probability (NAP) theory. Case 2: Large but finite lotteries. We propose application of the language of relative analysis (a type of non-standard analysis) to formulate a new model for rational belief, called Stratified Belief. This contextualist model seems well-suited to deal with a concept of beliefs based on probabilities ‘sufficiently close to unity’. -/- The second part presents a case study in social epistemology. We model a group of agents who update their opinions by averaging the opinions of other agents. Our main goal is to calculate the probability for an agent to end up in an inconsistent belief state due to updating. To that end, an analytical expression is given and evaluated numerically, both exactly and using statistical sampling. The probability of ending up in an inconsistent belief state turns out to be always smaller than 2%. (shrink)
Karl Popper discovered in 1938 that the unconditional probability of a conditional of the form ‘If A, then B’ normally exceeds the conditional probability of B given A, provided that ‘If A, then B’ is taken to mean the same as ‘Not (A and not B)’. So it was clear (but presumably only to him at that time) that the conditional probability of B given A cannot be reduced to the unconditional probability of the material conditional (...) ‘If A, then B’. I describe how this insight was developed in Popper’s writings and I add to this historical study a logical one, in which I compare laws of excess in Kolmogorov probability theory with laws of excess in Popper probability theory. (shrink)
Bayesian confirmation theory is rife with confirmation measures. Zalabardo focuses on the probability difference measure, the probability ratio measure, the likelihood difference measure, and the likelihood ratio measure. He argues that the likelihood ratio measure is adequate, but each of the other three measures is not. He argues for this by setting out three adequacy conditions on confirmation measures and arguing in effect that all of them are met by the likelihood ratio measure but not by any of (...) the other three measures. Glass and McCartney, hereafter “G&M,” accept the conclusion of Zalabardo’s argument along with each of the premises in it. They nonetheless try to improve on Zalabardo’s argument by replacing his third adequacy condition with a weaker condition. They do this because of a worry to the effect that Zalabardo’s third adequacy condition runs counter to the idea behind his first adequacy condition. G&M have in mind confirmation in the sense of increase in probability: the degree to which E confirms H is a matter of the degree to which E increases H’s probability. I call this sense of confirmation “IP.” I set out four ways of precisifying IP. I call them “IP1,” “IP2,” “IP3,” and “IP4.” Each of them is based on the assumption that the degree to which E increases H’s probability is a matter of the distance between p and a certain other probability involving H. I then evaluate G&M’s argument in light of them. (shrink)
Epistemic closure under known implication is the principle that knowledge of "p" and knowledge of "p implies q", together, imply knowledge of "q". This principle is intuitive, yet several putative counterexamples have been formulated against it. This paper addresses the question, why is epistemic closure both intuitive and prone to counterexamples? In particular, the paper examines whether probability theory can offer an answer to this question based on four strategies. The first probability-based strategy rests on the accumulation of (...) risks. The problem with this strategy is that risk accumulation cannot accommodate certain counterexamples to epistemic closure. The second strategy is based on the idea of evidential support, that is, a piece of evidence supports a proposition whenever it increases the probability of the proposition. This strategy makes progress and can accommodate certain putative counterexamples to closure. However, this strategy also gives rise to a number of counterintuitive results. Finally, there are two broadly probabilistic strategies, one based on the idea of resilient probability and the other on the idea of assumptions that are taken for granted. These strategies are promising but are prone to some of the shortcomings of the second strategy. All in all, I conclude that each strategy fails. Probability theory, then, is unlikely to offer the account we need. (shrink)
This thesis focuses on expressively rich languages that can formalise talk about probability. These languages have sentences that say something about probabilities of probabilities, but also sentences that say something about the probability of themselves. For example: (π): “The probability of the sentence labelled π is not greater than 1/2.” Such sentences lead to philosophical and technical challenges; but can be useful. For example they bear a close connection to situations where ones confidence in something can affect (...) whether it is the case or not. The motivating interpretation of probability as an agent's degrees of belief will be focused on throughout the thesis. -/- This thesis aims to answer two questions relevant to such frameworks, which correspond to the two parts of the thesis: “How can one develop a formal semantics for this framework?” and “What rational constraints are there on an agent once such expressive frameworks are considered?”. (shrink)
Contrary to Bell’s theorem it is demonstrated that with the use of classical probability theory the quantum correlation can be approximated. Hence, one may not conclude from experiment that all local hidden variable theories are ruled out by a violation of inequality result.
This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or "toy" model of quantum mechanics over sets (QM/sets). There are two parts. The notion of an "event" is reinterpreted from being an epistemological state of indefiniteness to being an objective state of indefiniteness. And the mathematical framework of finite probability theory is recast as the quantum probability calculus for QM/sets. The (...) point is not to clarify finite probability theory but to elucidate quantum mechanics itself by seeing some of its quantum features in a classical setting. (shrink)
Probability plays a crucial role regarding the understanding of the relationship which exists between mathematics and physics. It will be the point of departure of this brief reflection concerning this subject, as well as about the placement of Poincaré’s thought in the scenario offered by some contemporary perspectives.
It is argued that two observers with the same information may rightly disagree about the probability of an event that they are both observing. This is a correct way of describing the view of a lottery outcome from the perspective of a winner and from the perspective of an observer not connected with the winner - the outcome is improbable for the winner and not improbable for the unconnected observer. This claim is both argued for and extended by developing (...) a case in which a probabilistic inference is supported for one observer and not for another, though they relevantly differ only in perspective, not in any information that they have. It is pointed out, finally, that all probabilities are in this way dependent on perspective. (shrink)
This paper argues for the importance of Chapter 33 of Book 2 of Locke's _Essay Concerning Human Understanding_ ("Of the Association of Ideas) both for Locke's own philosophy and for its subsequent reception by Hume. It is argued that in the 4th edition of the Essay of 1700, in which the chapter was added, Locke acknowledged that many beliefs, particularly in religion, are not voluntary and cannot be eradicated through reason and evidence. The author discusses the origins of the chapter (...) in Locke's own earlier writings on madness and in discussions of Enthusiasm in religion. While recognizing association of ideas as derived through custom and habit is the source of prejudice as Locke argued, Hume went on to show how it also is the basis for what Locke himself called "the highest degree of probability", namely "constant and never-failing Experience in like cases" and our belief in “steady and regular Causes.”. (shrink)
In this text the ancient philosophical question of determinism (“Does every event have a cause ?”) will be re-examined. In the philosophy of science and physics communities the orthodox position states that the physical world is indeterministic: quantum events would have no causes but happen by irreducible chance. Arguably the clearest theorem that leads to this conclusion is Bell’s theorem. The commonly accepted ‘solution’ to the theorem is ‘indeterminism’, in agreement with the Copenhagen interpretation. Here it is recalled that indeterminism (...) is not really a physical but rather a philosophical hypothesis, and that it has counterintuitive and far-reaching implications. At the same time another solution to Bell’s theorem exists, often termed ‘superdeterminism’ or ‘total determinism’. Superdeterminism appears to be a philosophical position that is centuries and probably millennia old: it is for instance Spinoza’s determinism. If Bell’s theorem has both indeterministic and deterministic solutions, choosing between determinism and indeterminism is a philosophical question, not a matter of physical experimentation, as is widely believed. If it is impossible to use physics for deciding between both positions, it is legitimate to ask which philosophical theories are of help. Here it is argued that probability theory – more precisely the interpretation of probability – is instrumental for advancing the debate. It appears that the hypothesis of determinism allows to answer a series of precise questions from probability theory, while indeterminism remains silent for these questions. From this point of view determinism appears to be the more reasonable assumption, after all. (shrink)
There is a trade-off between specificity and accuracy in existing models of belief. Descriptions of agents in the tripartite model, which recognizes only three doxastic attitudes—belief, disbelief, and suspension of judgment—are typically accurate, but not sufficiently specific. The orthodox Bayesian model, which requires real-valued credences, is perfectly specific, but often inaccurate: we often lack precise credences. I argue, first, that a popular attempt to fix the Bayesian model by using sets of functions is also inaccurate, since it requires us to (...) have interval-valued credences with perfectly precise endpoints. We can see this problem as analogous to the problem of higher order vagueness. Ultimately, I argue, the only way to avoid these problems is to endorse Insurmountable Unclassifiability. This principle has some surprising and radical consequences. For example, it entails that the trade-off between accuracy and specificity is in-principle unavoidable: sometimes it is simply impossible to characterize an agent’s doxastic state in a way that is both fully accurate and maximally specific. What we can do, however, is improve on both the tripartite and existing Bayesian models. I construct a new model of belief—the minimal model—that allows us to characterize agents with much greater specificity than the tripartite model, and yet which remains, unlike existing Bayesian models, perfectly accurate. (shrink)
Sometimes different partitions of the same space each seem to divide that space into propositions that call for equal epistemic treatment. Famously, equal treatment in the form of equal point-valued credence leads to incoherence. Some have argued that equal treatment in the form of equal interval-valued credence solves the puzzle. This paper shows that, once we rule out intervals with extreme endpoints, this proposal also leads to incoherence.
Early work on the frequency theory of probability made extensive use of the notion of randomness, conceived of as a property possessed by disorderly collections of outcomes. Growing out of this work, a rich mathematical literature on algorithmic randomness and Kolmogorov complexity developed through the twentieth century, but largely lost contact with the philosophical literature on physical probability. The present chapter begins with a clarification of the notions of randomness and probability, conceiving of the former as a (...) property of a sequence of outcomes, and the latter as a property of the process generating those outcomes. A discussion follows of the nature and limits of the relationship between the two notions, with largely negative verdicts on the prospects for any reduction of one to the other, although the existence of an apparently random sequence of outcomes is good evidence for the involvement of a genuinely chancy process. (shrink)
This paper is concerned with representations of belief by means of nonadditive probabilities of the Dempster-Shafer (DS) type. After surveying some foundational issues and results in the D.S. theory, including Suppes's related contributions, the paper proceeds to analyze the connection of the D.S. theory with some of the work currently pursued in epistemic logic. A preliminary investigation of the modal logic of belief functions à la Shafer is made. There it is shown that the Alchourrron-Gärdenfors-Makinson (A.G.M.) logic of belief change (...) is closely related to the D.S. theory. The final section compares the critique of Bayesianism which underlies the present paper with some important objections raised by Suppes against this doctrine. -/- . (shrink)
If we add as an extra premise that the agent does know H, then it is possible for her to know E H, we get the conclusion that the agent does not really know H. But even without that closure premise, or something like it, the conclusion seems quite dramatic. One possible response to the argument, floated by both Descartes and Hume, is to accept the conclusion and embrace scepticism. We cannot know anything that goes beyond our evidence, so (...) we do not know very much at all. This is a remarkably sceptical conclusion, so we should resist it if at all possible. A more modern response, associated with externalists like John McDowell and Timothy Williamson, is to accept the conclusion but deny it is as sceptical as it first appears. The Humean argument, even if it works, only shows that our evidence and our knowledge are more closely linked than we might have thought. Perhaps that’s true because we have a lot of evidence, not because we have very little knowledge. There’s something right about this response I think. We have more evidence than Descartes or Hume thought we had. But I think we still need the idea of ampliative knowledge. It stretches the concept of evidence to breaking point to suggest that all of our knowledge, including knowledge about the future, is part of our evidence. So the conclusion really is unacceptable. Or, at least, I think we should try to see what an epistemology that rejects the conclusion looks like. (shrink)
I develop a probabilistic account of coherence, and argue that at least in certain respects it is preferable to (at least some of) the main extant probabilistic accounts of coherence: (i) Igor Douven and Wouter Meijs’s account, (ii) Branden Fitelson’s account, (iii) Erik Olsson’s account, and (iv) Tomoji Shogenji’s account. Further, I relate the account to an important, but little discussed, problem for standard varieties of coherentism, viz., the “Problem of Justified Inconsistent Beliefs.”.
Many epistemologists hold that an agent can come to justifiably believe that p is true by seeing that it appears that p is true, without having any antecedent reason to believe that visual impressions are generally reliable. Certain reliabilists think this, at least if the agent’s vision is generally reliable. And it is a central tenet of dogmatism (as described by Pryor (2000) and Pryor (2004)) that this is possible. Against these positions it has been argued (e.g. by Cohen (2005) (...) and White (2006)) that this violates some principles from probabilistic learning theory. To see the problem, let’s note what the dogmatist thinks we can learn by paying attention to how things appear. (The reliabilist says the same things, but we’ll focus on the dogmatist.) Suppose an agent receives an appearance that p, and comes to believe that p. Letting Ap be the proposition that it appears to the agent that p, and → be the material implication, we can say that the agent learns that p, and hence is in a position to infer Ap → p, once they receive the evidence Ap.1 This is surprising, because we can prove the following. (shrink)
Inductive logic would be the logic of arguments that are not valid, but nevertheless justify belief in something like the way in which valid arguments would. Maybe we could describe it as the logic of “almost valid” arguments. There is a sort of transitivity to valid arguments. Valid arguments can be chained together to form arguments and such arguments are themselves valid. One wants to distinguish the “almost valid” arguments by noting that chains of “almost valid” arguments are weaker than (...) the links that form them. But it is not clear that this is so. I have an apparent counterexample the claim. Though: as is typical in these sorts of situations, it is hard to tell where the problem lies. (shrink)
This article deals with the nature of the objective-subjective dichotomy, first from a general historical point of view, and then with regard to the use of these terms over time to describe theories of probability. The different (metaphysical and epistemological) meanings of “objective” and “subjective” are analyzed, and then used to show that all probability theories can be divided into three broad classes.
I introduce a formalization of probability which takes the concept of 'evidence' as primitive. In parallel to the intuitionistic conception of truth, in which 'proof' is primitive and an assertion A is judged to be true just in case there is a proof witnessing it, here 'evidence' is primitive and A is judged to be probable just in case there is evidence supporting it. I formalize this outlook by representing propositions as types in Martin-Lof type theory (MLTT) and defining (...) a 'probability type' on top of the existing machinery of MLTT, whose inhabitants represent pieces of evidence in favor of a proposition. One upshot of this approach is the potential for a mathematical formalism which treats 'conjectures' as mathematical objects in their own right. Other intuitive properties of evidence occur as theorems in this formalism. (shrink)
Using “brute reason” I will show why there can be only one valid interpretation of probability. The valid interpretation turns out to be a further refinement of Popper’s Propensity interpretation of probability. Via some famous probability puzzles and new thought experiments I will show how all other interpretations of probability fail, in particular the Bayesian interpretations, while these puzzles do not present any difficulties for the interpretation proposed here. In addition, the new interpretation casts doubt on (...) some concepts often taken as basic and unproblematic, like rationality, utility and expectation. This in turn has implications for decision theory, economic theory and the philosophy of physics. (shrink)
“Negative probability” in practice. Quantum Communication: Very small phase space regions turn out to be thermodynamically analogical to those of superconductors. Macro-bodies or signals might exist in coherent or entangled state. Such physical objects having unusual properties could be the basis of quantum communication channels or even normal physical ones … Questions and a few answers about negative probability: Why does it appear in quantum mechanics? It appears in phase-space formulated quantum mechanics; next, in quantum correlations … and (...) for wave-particle dualism. Its meaning:- mathematically: a ratio of two measures (of sets), which are not collinear; physically: the ratio of the measurements of two physical quantities, which are not simultaneously measurable. The main innovation is in the mapping between phase and Hilbert space, since both are sums. Phase space is a sum of cells, and Hilbert space is a sum of qubits. The mapping is reduced to the mapping of a cell into a qubit and vice versa. Negative probability helps quantum mechanics to be represented quasi-statistically by quasi-probabilistic distributions. Pure states of negative probability cannot exist, but they, where the conditions for their expression exists, decrease the sum probability of the integrally positive regions of the distributions. They reflect the immediate interaction (interference) of probabilities common in quantum mechanics. (shrink)
The economic paradigms of Ludwig von Mises on the one hand and of John Maynard Keynes on the other have been correctly recognized as antithetical at the theoretical level, and as antagonistic with respect to their practical and public policy implications. Characteristically they have also been vindicated by opposing sides of the political spectrum. Nevertheless the respective views of these authors with respect to the meaning and interpretation of probability exhibit a closer conceptual affinity than has been acknowledged in (...) the literature. In particular it is argued that in some relevant respects Ludwig von Mises´ interpretation of the concept of probability exhibits a closer affinity with the interpretation of probability developed by his opponent John Maynard Keynes than with the views on probability espoused by his brother Richard von Mises. Nevertheless there also exist significant differences between the views of Ludwig von Mises and those of John Maynard Keynes with respect to probability. One of these is highlighted more particularly: where John Maynard Keynes advocated a monist view of probability, Ludwig von Mises embraced a dualist view of probability, according to which the concept of probability has two different meanings each of which is valid in a particular area or context. It is concluded that both John Maynard Keynes and Ludwig von Mises presented highly nuanced views with respect to the meaning and interpretation of probability. (shrink)
It was Hume's concept of knowledge that marked Masaryk's philosophy more than influential Kant. Masaryk devoted Hume his inaugural lecture The Probability Calculus and Hume's Scepticism at Prague University in 1882. He tried to face his scepticism concerning causation and induction by a formula P = n: or P = : where P means the increasing probability that an event that had happened n times in the past will happen again. Hume stresses that there is an essential difference (...) between probability and certainty, and we have no logical reason to presuppose that the past experience is legitimate for expectation that the future will resemble to the past. Only our belief, not knowledge, leads us to that. Although Masaryk did not accept Hume's scepticism, he had deep understanding for his way of thinking. Reflection of Hume's influence on Masaryk in Czech philosophy is unsatisfactory, which is stated in this article. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.