Bayesian Test of Significance for Conditional Independence: The Multinomial Model.

Entropy 16:1376-1395 (2014)
  Copy   BIBTEX

Abstract

Conditional independence tests have received special attention lately in machine learning and computational intelligence related literature as an important indicator of the relationship among the variables used by their models. In the field of probabilistic graphical models, which includes Bayesian network models, conditional independence tests are especially important for the task of learning the probabilistic graphical model structure from data. In this paper, we propose the full Bayesian significance test for tests of conditional independence for discrete datasets. The full Bayesian significance test is a powerful Bayesian test for precise hypothesis, as an alternative to the frequentist’s significance tests (characterized by the calculation of the p-value).

Author's Profile

Julio Michael Stern
University of São Paulo

Analytics

Added to PP
2021-07-24

Downloads
447 (#53,666)

6 months
152 (#24,366)

Historical graph of downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.
How can I increase my downloads?