Abstract
This paper presents REAL, a Real-Valued Attribute Classification Tree Learning Algorithm. Several of the algorithm's unique features are explained by úe users' demands for a decision support tool to be used for evaluating financial operations strategies. Compared to competing algorithms, in our applications, REAL presents maj or advantages : (1) The REAL classification trees usually have smaller error rates. (2) A single conviction (or trust) measure at each leaf is more convenient than the traditional (probability, confidence-level) pair. (3) No need for an external pruning criterion.