Information Relativity Theory and its Application to Time and Space


In a recent paper I proposed a novel relativity theory termed Information Relativity (IR). Unlike Einstein's relativity which dictates as force majeure that relativity is a true state of nature, Information Relativity assumes that relativity results from difference in information about nature between observers who are in motion relative to each other. The theory is based on two axioms: 1. the laws of physics are the same in all inertial frames of reference (Special relativity's first axiom); 2. All translations of information from one frame of reference to another are carried by light or by another carrier with equal velocity (information-carrier axiom). For the case of constant relative velocities, I showed in the aforementioned paper that IR accounts successfully for the results of a class of relativistic time results, including the Michelson-Morley's "null" result, the Sagnac effect, and the neutrino velocities reported by OPERA and other collaborations. Here I apply the theory, with no alteration, to cosmology. I show that the theory is successful in accounting for several cosmological findings, including the pattern of recession velocity predicted by inflationary theories, the GZK energy suppression phenomenon at redshift z ̴ 1.6, and the amounts of matter and dark energy reported in recent ΛCDM cosmologies.

Author's Profile

Ramzi Suleiman
University of Haifa


Added to PP

442 (#23,020)

6 months
122 (#9,340)

Historical graph of downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.
How can I increase my downloads?