On the fundamental meaning of the principle of least action and consequences for a "dynamic" quantum physics

Journal of Modern Physics 7:365-374 (2016)
  Copy   BIBTEX

Abstract

The principle of least action, which has so successfully been applied to diverse fields of physics looks back at three centuries of philosophical and mathematical discussions and controversies. They could not explain why nature is applying the principle and why scalar energy quantities succeed in describing dynamic motion. When the least action integral is subdivided into infinitesimal small sections each one has to maintain the ability to minimise. This however has the mathematical consequence that the Lagrange function at a given point of the trajectory, the dynamic, available energy generating motion, must itself have a fundamental property to minimize. Since a scalar quantity, a pure number, cannot do that, energy must fundamentally be dynamic and time oriented for a consistent understanding. It must have vectorial properties in aiming at a decrease of free energy per state (which would also allow derivation of the second law of thermodynamics). Present physics is ignoring that and applying variation calculus as a formal mathematical tool to impose a minimisation of scalar assumed energy quantities for obtaining dynamic motion. When, however, the dynamic property of energy is taken seriously it is fundamental and has also to be applied to quantum processes. A consequence is that particle and wave are not equivalent, but the wave (distributed energy) follows from the first (concentrated energy). Information, provided from the beginning, an information self-image of matter, is additionally needed to recreate the particle from the wave, shaping a “dynamic” particle-wave duality. It is shown that this new concept of a “dynamic” quantum state rationally explains quantization, the double slit experiment and quantum correlation, which has not been possible before. Some more general considerations on the link between quantum processes, gravitation and cosmological phenomena are also advanced.

Author's Profile

Analytics

Added to PP
2016-03-06

Downloads
1,658 (#7,546)

6 months
276 (#6,515)

Historical graph of downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.
How can I increase my downloads?