Dissertation, University of Groningen (
2011)
Copy
BIBTEX
Abstract
This dissertation is a contribution to formal and computational philosophy.
In the first part, we show that by exploiting the parallels between large, yet finite lotteries on the one hand and countably infinite lotteries on the other, we gain insights in the foundations of probability theory as well as in epistemology.
Case 1: Infinite lotteries.
We discuss how the concept of a fair finite lottery can best be extended to denumerably infinite lotteries. The solution boils down to the introduction of infinitesimal probability values, which can be achieved using non-standard analysis. Our solution can be generalized to uncountable sample spaces, giving rise to a Non-Archimedean Probability (NAP) theory.
Case 2: Large but finite lotteries.
We propose application of the language of relative analysis (a type of non-standard analysis) to formulate a new model for rational belief, called Stratified Belief. This contextualist model seems well-suited to deal with a concept of beliefs based on probabilities ‘sufficiently close to unity’.
The second part presents a case study in social epistemology. We model a group of agents who update their opinions by averaging the opinions of other agents. Our main goal is to calculate the probability for an agent to end up in an inconsistent belief state due to updating. To that end, an analytical expression is given and evaluated numerically, both exactly and using statistical sampling. The probability of ending up in an inconsistent belief state turns out to be always smaller than 2%.