Abstract
Natural genome editing from a biocommunicative perspective is the competent agent-driven generation and integration of meaningful nucleotide sequences into pre-existing genomic content arrangements, and the ability to (re-)combine and (re-)regulate them according to context-dependent (i.e. adaptational) purposes of the host organism. Natural genome editing integrates both natural editing of genetic code and epigenetic marking that determines genetic reading patterns. As agents that edit genetic code and epigenetically mark genomic structures, viral and subviral agents have been suggested because they may be evolutionarily older than cellular life. This hypothesis that viruses and viral-like agents edit genetic code is developed according to three well investigated examples that represent key evolutionary inventions in which non-lytic viral swarms act symbiotically in a persistent lifestyle within cellular host genomes: origin of eukaryotic nucleus, adaptive immunity, placental mammals. Additionally an abundance of various RNA elements cooperate in a variety of steps and substeps as regulatory and catalytic units with multiple competencies to act on the genetic code. Most of these RNA agents such as transposons, retroposons and small non-coding RNAs act consortially and are remnants of persistent viral infections that now act as co-opted adaptations in cellular key processes.