The Ontology of Biological and Clinical Statistics (OBCS) for standardized and reproducible statistical analysis

Download Edit this record How to cite View on PhilPapers
Abstract
Statistics play a critical role in biological and clinical research. However, most reports of scientific results in the published literature make it difficult for the reader to reproduce the statistical analyses performed in achieving those results because they provide inadequate documentation of the statistical tests and algorithms applied. The Ontology of Biological and Clinical Statistics (OBCS) is put forward here as a step towards solving this problem. Terms in OBCS, including ‘data collection’, ‘data transformation in statistics’, ‘data visualization’, ‘statistical data analysis’, and ‘drawing a conclusion based on data’, cover the major types of statistical processes used in basic biological research and clinical outcome studies. OBCS is aligned with the Basic Formal Ontology (BFO) and extends the Ontology of Biomedical Investigations (OBI), an OBO (Open Biological and Biomedical Ontologies) Foundry ontology supported by over 20 research communities. We discuss two examples illustrating how the ontology is being applied. In the first (biological) use case, we describe how OBCS was applied to represent the high throughput microarray data analysis of immunological transcriptional profiles in human subjects vaccinated with an influenza vaccine. In the second (clinical outcomes) use case, we applied OBCS to represent the processing of electronic health care data to determine the associations between hospital staffing levels and patient mortality. Our case studies were designed to show how OBCS can be used for the consistent representation of statistical analysis pipelines under two different research paradigms. By representing statistics-related terms and their relations in a rigorous fashion, OBCS facilitates standard data analysis and integration, and supports reproducible biological and clinical research.
PhilPapers/Archive ID
ZHETOO
Revision history
Archival date: 2016-10-08
View upload history
References found in this work BETA
Building Ontologies with Basic Formal Ontology.Arp, Robert; Smith, Barry & Spear, Andrew D.
The OBO Foundry: Coordinated Evolution of Ontologies to Support Biomedical Data Integration.Smith, Barry; Ashburner, Michael; Rosse, Cornelius; Bard, Jonathan; Bug, William; Ceusters, Werner; Goldberg, Louis J.; Eilbeck, Karen; Ireland, Amelia; Mungall, Christopher J.; Leontis, Neocles & Others,
The Ontology for Biomedical Investigations.Bandrowski, Anita; Brinkman, Ryan; Brochhausen, Mathias; Brush, Matthew H.; Bug, Bill; Chibucos, Marcus C.; Clancy, Kevin; Courtot, Mélanie; Derom, Dirk; Dumontier, Michel; Fan, Liju; Fostel, Jennifer; Fragoso, Gilberto; Gibson, Frank; Gonzalez-Beltran, Alejandra; Haendel, Melissa A.; He, Yongqun; Heiskanen, Mervi; Hernandez-Boussard, Tina; Jensen, Mark; Lin, Yu; Lister, Allyson L.; Lord, Phillip; Malone, James; Manduchi, Elisabetta; McGee, Monnie; Morrison, Norman; Overton, James A.; Parkinson, Helen; Peters, Bjoern; Rocca-Serra, Philippe; Ruttenberg, Alan; Sansone, Susanna-Assunta; Scheuermann, Richard H.; Schober, Daniel; Smith, Barry; Soldatova, Larisa N.; Stoeckert, Christian J.; Taylor, Chris F.; Torniai, Carlo; Turner, Jessica A.; Vita, Randi; Whetzel, Patricia L. & Zheng, Jie
MIREOT: The Minimum Information to Reference an External Ontology Term.Courtot, Mélanie; Gibson, Frank; Lister, Allyson L.; Malone, James; Schober, Daniel; Brinkman, Ryan R. & Ruttenberg, Alan

View all 6 references / Add more references

Citations of this work BETA

No citations found.

Add more citations

Added to PP index
2016-10-08

Total views
81 ( #28,709 of 42,358 )

Recent downloads (6 months)
33 ( #19,783 of 42,358 )

How can I increase my downloads?

Downloads since first upload
This graph includes both downloads from PhilArchive and clicks to external links.