Switch to: Citations

Add references

You must login to add references.
  1. Minimal but not strongly minimal structures with arbitrary finite dimensions.Koichiro Ikeda - 2001 - Journal of Symbolic Logic 66 (1):117-126.
    An infinite structure is said to be minimal if each of its definable subset is finite or cofinite. Modifying Hrushovski's method we construct minimal, non strongly minimal structures with arbitrary finite dimensions. This answers negatively to a problem posed by B. I Zilber.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Weight ω in stable theories with few types.Bernhard Herwig - 1995 - Journal of Symbolic Logic 60 (2):353-373.
    We construct a type p with preweight ω with respect to itself in a theory with few types. A type with this property must be present in a stable theory with finitely many (but more than one) countable models. The construction is a modification of Hrushovski's important pseudoplane construction.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • ℵ0-categorical structures with a predimension.David M. Evans - 2002 - Annals of Pure and Applied Logic 116 (1-3):157-186.
    We give an axiomatic framework for the non-modular simple 0-categorical structures constructed by Hrushovski. This allows us to verify some of their properties in a uniform way, and to show that these properties are preserved by iterations of the construction.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • On generic structures.D. W. Kueker & M. C. Laskowski - 1992 - Notre Dame Journal of Formal Logic 33 (2):175-183.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Stable generic structures.John T. Baldwin & Niandong Shi - 1996 - Annals of Pure and Applied Logic 79 (1):1-35.
    Hrushovski originated the study of “flat” stable structures in constructing a new strongly minimal set and a stable 0-categorical pseudoplane. We exhibit a set of axioms which for collections of finite structure with dimension function δ give rise to stable generic models. In addition to the Hrushovski examples, this formalization includes Baldwin's almost strongly minimal non-Desarguesian projective plane and several others. We develop the new case where finite sets may have infinite closures with respect to the dimension function δ. In (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • A new strongly minimal set.Ehud Hrushovski - 1993 - Annals of Pure and Applied Logic 62 (2):147-166.
    We construct a new class of 1 categorical structures, disproving Zilber's conjecture, and study some of their properties.
    Download  
     
    Export citation  
     
    Bookmark   89 citations  
  • (1 other version)Weight $\omega$ in Stable Theories with Few Types.Bernhard Herwig - 1995 - Journal of Symbolic Logic 60 (2):353-373.
    We construct a type $p$ with preweight $\omega$ with respect to itself in a theory with few types. A type with this property must be present in a stable theory with finitely many countable models. The construction is a modification of Hrushovski's important pseudoplane construction.
    Download  
     
    Export citation  
     
    Bookmark   4 citations