Switch to: References

Add citations

You must login to add citations.
  1. Model theory of special subvarieties and Schanuel-type conjectures.Boris Zilber - 2016 - Annals of Pure and Applied Logic 167 (10):1000-1028.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • ℵ0-categorical structures with a predimension.David M. Evans - 2002 - Annals of Pure and Applied Logic 116 (1-3):157-186.
    We give an axiomatic framework for the non-modular simple 0-categorical structures constructed by Hrushovski. This allows us to verify some of their properties in a uniform way, and to show that these properties are preserved by iterations of the construction.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • An Analytic Zariski Structure Over a Field.Nick Peatfield - 2006 - Archive for Mathematical Logic 45 (6):739-768.
    Following the introduction and preliminary investigations of analytic Zariski structures in Peatfield and Zilber (Ann pure Appl Logic 132:125–180, 2005) an example of an analytic Zariski structure extending an algebraically closed field is provided. The example is constructed using Hrushovski’s method of free amalgamation, and a topology is introduced in which we can verify the analytic Zariski axioms.
    Download  
     
    Export citation  
     
    Bookmark  
  • New spectra of strongly minimal theories in finite languages.Uri Andrews - 2011 - Annals of Pure and Applied Logic 162 (5):367-372.
    We describe strongly minimal theories Tn with finite languages such that in the chain of countable models of Tn, only the first n models have recursive presentations. Also, we describe a strongly minimal theory with a finite language such that every non-saturated model has a recursive presentation.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Schanuel Condition For Weierstrass Equations.Jonathan Kirby - 2005 - Journal of Symbolic Logic 70 (2):631-638.
    I prove a version of Schanuel's conjecture for Weierstrass equations in differential fields, answering a question of Zilber, and show that the linear independence condition in the statement cannot be relaxed.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The geometry of forking and groups of finite Morley rank.Anand Pillay - 1995 - Journal of Symbolic Logic 60 (4):1251-1259.
    The notion of CM-triviality was introduced by Hrushovski, who showed that his new strongly minimal sets have this property. Recently Baudisch has shown that his new ω 1 -categorical group has this property. Here we show that any group of finite Morley rank definable in a CM-trivial theory is nilpotent-by-finite, or equivalently no simple group of finite Morley rank can be definable in a CM-trivial theory.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Strongly minimal fusions of vector spaces.Kitty L. Holland - 1997 - Annals of Pure and Applied Logic 83 (1):1-22.
    We provide a simple and transparent construction of Hrushovski's strongly minimal fusions in the case where the fused strongly minimal sets are vector spaces. We strengthen Hrushovski's result by showing that the strongly minimal fusions are model complete.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Non-isolated types in stable theories.Predrag Tanović - 2007 - Annals of Pure and Applied Logic 145 (1):1-15.
    We introduce notions of strong and eventual strong non-isolation for types in countable, stable theories. For T superstable or small stable we prove a dichotomy theorem: a regular type over a finite domain is either eventually strongly non-isolated or is non-orthogonal to a NENI type . As an application we obtain the upper bound for Lascar’s rank of a superstable theory which is one-based or trivial, and has fewer than 20 non-isomorphic countable models.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Construction d'un groupe dans les structures C-minimales.Fares Maalouf - 2008 - Journal of Symbolic Logic 73 (3):957-968.
    We will study some aspects of the local structure of models of certain C-minimal theories. We will prove (theorem 19) that, in a sufficiently saturated C-minimal structure in which the algebraic closure has the exchange property and which is locally modular, we can construct an infinite type-definable group around any non trivial point (a term to be defined later). On va étudier ici certains aspects de la structure locale des modèles de certaines théories C-minimales. On va prouver (théorème 19) que, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Fusion over Sublanguages.Assaf Hasson & Martin Hils - 2006 - Journal of Symbolic Logic 71 (2):361 - 398.
    Generalising Hrushovski's fusion technique we construct the free fusion of two strongly minimal theories T₁, T₂ intersecting in a totally categorical sub-theory T₀. We show that if, e.g., T₀ is the theory of infinite vector spaces over a finite field then the fusion theory Tω exists, is complete and ω-stable of rank ω. We give a detailed geometrical analysis of Tω, proving that if both T₁, T₂ are 1-based then, Tω can be collapsed into a strongly minimal theory, if some (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Is a spectrum of a non-disintegrated flat strongly minimal model complete theory in a language with finite signature.Uri Andrews & Omer Mermelstein - 2021 - Journal of Symbolic Logic 86 (4):1632-1656.
    We build a new spectrum of recursive models (SRM(T)) of a strongly minimal theory. This theory is non-disintegrated, flat, model complete, and in a language with a finite structure.
    Download  
     
    Export citation  
     
    Bookmark  
  • The canonical topology on dp-minimal fields.Will Johnson - 2018 - Journal of Mathematical Logic 18 (2):1850007.
    We construct a nontrivial definable type V field topology on any dp-minimal field K that is not strongly minimal, and prove that definable subsets of Kn have small boundary. Using this topology and...
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • An axiomatic approach to free amalgamation.Gabriel Conant - 2017 - Journal of Symbolic Logic 82 (2):648-671.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On (uniform) hierarchical decompositions of finite structures and model-theoretic geometry.Cameron Donnay Hill - 2016 - Annals of Pure and Applied Logic 167 (11):1093-1122.
    Download  
     
    Export citation  
     
    Bookmark  
  • The additive collapse.Andreas Baudisch - 2009 - Journal of Mathematical Logic 9 (2):241-284.
    Summary. From known examples of theories T obtained by Hrushovski-constructions and of infinite Morley rank, properties are extracted, that allow the collapse to a finite rank substructure. The results are used to give a more model-theoretic proof of the existence of the new uncountably categorical groups in [3].
    Download  
     
    Export citation  
     
    Bookmark  
  • There are 2ℵ⚬ many almost strongly minimal generalized n-gons that do not interpret and infinite group.Mark J. Debonis & Ali Nesin - 1998 - Journal of Symbolic Logic 63 (2):485 - 508.
    Generalizedn-gons are certain geometric structures (incidence geometries) that generalize the concept of projective planes (the nontrivial generalized 3-gons are exactly the projective planes).In a simplified world, every generalizedn-gon of finite Morley rank would be an algebraic one, i.e., one of the three families described in [9] for example. To our horror, John Baldwin [2], using methods discovered by Hrushovski [7], constructed ℵ1-categorical projective planes which are not algebraic. The projective planes that Baldwin constructed fail to be algebraic in a dramatic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A note on equational theories.Markus Junker - 2000 - Journal of Symbolic Logic 65 (4):1705-1712.
    Several attempts have been done to distinguish “positive” information in an arbitrary first order theory, i.e., to find a well behaved class of closed sets among the definable sets. In many cases, a definable set is said to be closed if its conjugates are sufficiently distinct from each other. Each such definition yields a class of theories, namely those where all definable sets are constructible, i.e., boolean combinations of closed sets. Here are some examples, ordered by strength:Weak normality describes a (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Theories with equational forking.Markus Junker & Ingo Kraus - 2002 - Journal of Symbolic Logic 67 (1):326-340.
    We show that equational independence in the sense of Srour equals local non-forking. We then examine so-called almost equational theories where equational independence is a symmetric relation.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Constructing ω-stable structures: Rank 2 fields.John T. Baldwin & Kitty Holland - 2000 - Journal of Symbolic Logic 65 (1):371-391.
    We provide a general framework for studying the expansion of strongly minimal sets by adding additional relations in the style of Hrushovski. We introduce a notion of separation of quantifiers which is a condition on the class of expansions of finitely generated models for the expanded theory to have a countable ω-saturated model. We apply these results to construct for each sufficiently fast growing finite-to-one function μ from 'primitive extensions' to the natural numbers a theory T μ of an expansion (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Adequate predimension inequalities in differential fields.Vahagn Aslanyan - 2022 - Annals of Pure and Applied Logic 173 (1):103030.
    In this paper we study predimension inequalities in differential fields and define what it means for such an inequality to be adequate. Adequacy was informally introduced by Zilber, and here we give a precise definition in a quite general context. We also discuss the connection of this problem to definability of derivations in the reducts of differentially closed fields. The Ax-Schanuel inequality for the exponential differential equation (proved by Ax) and its analogue for the differential equation of the j-function (established (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (15 other versions)2008 European Summer Meeting of the Association for Symbolic Logic. Logic Colloquium '08.Alex J. Wilkie - 2009 - Bulletin of Symbolic Logic 15 (1):95-139.
    Download  
     
    Export citation  
     
    Bookmark  
  • Simplicity of the automorphism groups of some Hrushovski constructions.David M. Evans, Zaniar Ghadernezhad & Katrin Tent - 2016 - Annals of Pure and Applied Logic 167 (1):22-48.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Another stable group.Andreas Baudisch - 1996 - Annals of Pure and Applied Logic 80 (2):109-138.
    In a recent communication an uncountably categorical group has been constructed that has a non-locally-modular geometry and does not allow the interpretation of a field. We consider a system Δ of elementary axioms fulfilled by some special subgroups of the above group. We show that Δ is complete and stable, but not superstable. It is not even a R-group in the sense discussed by Wagner.
    Download  
     
    Export citation  
     
    Bookmark  
  • Mekler's construction preserves CM-triviality.Andreas Baudisch - 2002 - Annals of Pure and Applied Logic 115 (1-3):115-173.
    For every structure M of finite signature Mekler 781) has constructed a group G such that for every κ the maximal number of n -types over an elementary equivalent model of cardinality κ is the same for M and G . These groups are nilpotent of class 2 and of exponent p , where p is a fixed prime greater than 2. We consider stable structures M only and show that M is CM -trivial if and only if G is (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • CM-Triviality and stable groups.Frank Wagner - 1998 - Journal of Symbolic Logic 63 (4):1473-1495.
    We define a generalized version of CM-triviality, and show that in the presence of enough regular types, or solubility, a stable CM-trivial group is nilpotent-by-finite. A torsion-free small CM-trivial stable group is abelian and connected. The first result makes use of a generalized version of the analysis of bad groups.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A note on CM-Triviality and the geometry of forking.Anand Pillay - 2000 - Journal of Symbolic Logic 65 (1):474-480.
    CM-triviality of a stable theory is a notion introduced by Hrushovski [1]. The importance of this property is first that it holds of Hrushovski's new non 1-based strongly minimal sets, and second that it is still quite a restrictive property, and forbids the existence of definable fields or simple groups (see [2]). In [5], Frank Wagner posed some questions aboutCM-triviality, asking in particular whether a structure of finite rank, which is “coordinatized” byCM-trivial types of rank 1, is itselfCM-trivial. (Actually Wagner (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Model completeness of the new strongly minimal sets.Kitty Holland - 1999 - Journal of Symbolic Logic 64 (3):946-962.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Supersimple ω-categorical groups and theories.David M. Evans & Frank O. Wagner - 2000 - Journal of Symbolic Logic 65 (2):767-776.
    An ω-categorical supersimple group is finite-by-abelian-by-finite, and has finite SU-rank. Every definable subgroup is commensurable with an acl( $\emptyset$ )-definable subgroup. Every finitely based regular type in a CM-trivial ω-categorical simple theory is non-orthogonal to a type of SU-rank 1. In particular, a supersimple ω-categorical CM-trivial theory has finite SU-rank.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Ample dividing.David M. Evans - 2003 - Journal of Symbolic Logic 68 (4):1385-1402.
    We construct a stable one-based, trivial theory with a reduct which is not trivial. This answers a question of John B. Goode. Using this, we construct a stable theory which is n-ample for all natural numbers n, and does not interpret an infinite group.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A free pseudospace.Andreas Baudisch & Anand Pillay - 2000 - Journal of Symbolic Logic 65 (1):443-460.
    In this paper we construct a non-CM-trivial stable theory in which no infinite field is interpretable. In fact our theory will also be trivial and ω-stable, but of infinite Morley rank. A long term aim would be to find a nonCM-trivial theory which has finite Morley rank (or is even strongly minimal) and does not interpret a field. The construction in this paper is direct, and is a “3-dimensional” version of the free pseudoplane. In a sense we are cheating: the (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)Geometry, Calculus And Zil'ber's Conjecture, By, Pages 72 -- 83.Ya'acov Peterzil & Sergei Starchenko - 1996 - Bulletin of Symbolic Logic 2 (1):72-83.
    §1. Introduction. By and large, definitions of a differentiable structure on a set involve two ingredients, topology and algebra. However, in some cases, partial information on one or both of these is sufficient. A very simple example is that of the field ℝ where algebra alone determines the ordering and hence the topology of the field:In the case of the field ℂ, the algebraic structure is insufficient to determine the Euclidean topology; another topology, Zariski, is associated with the ield but (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Fraïssé sequences: category-theoretic approach to universal homogeneous structures.Wiesław Kubiś - 2014 - Annals of Pure and Applied Logic 165 (11):1755-1811.
    We develop a category-theoretic framework for universal homogeneous objects, with some applications in the theory of Banach spaces, linear orderings, and in the topology of compact Hausdorff spaces.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Finite and Infinite Model Theory-A Historical Perspective.John Baldwin - 2000 - Logic Journal of the IGPL 8 (5):605-628.
    We describe the progress of model theory in the last half century from the standpoint of how finite model theory might develop.
    Download  
     
    Export citation  
     
    Bookmark  
  • Simple generic structures.Massoud Pourmahdian - 2003 - Annals of Pure and Applied Logic 121 (2-3):227-260.
    A study of smooth classes whose generic structures have simple theory is carried out in a spirit similar to Hrushovski 147; Simplicity and the Lascar group, preprint, 1997) and Baldwin–Shi 1). We attach to a smooth class K0, of finite -structures a canonical inductive theory TNat, in an extension-by-definition of the language . Here TNat and the class of existentially closed models of =T+,EX, play an important role in description of the theory of the K0,-generic. We show that if M (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Smooth classes without AC and Robinson theories.Massoud Pourmahdian - 2002 - Journal of Symbolic Logic 67 (4):1274-1294.
    We study smooth classes without the algebraic closure property. For such smooth classes we investigate the simplicity of the class of generic structures, in the context of Robinson theories.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Annual meeting of the association for symbolic logic: Notre dame, 1993.Steven Buechler - 1994 - Journal of Symbolic Logic 59 (2):696-719.
    Download  
     
    Export citation  
     
    Bookmark  
  • Definability of derivations in the reducts of differentially closed fields.Vahagn Aslanyan - 2017 - Journal of Symbolic Logic 82 (4):1252-1277.
    Let${\cal F}$=(F; +,.,0, 1, D) be a differentially closed field. We consider the question of definability of the derivation D in reducts of${\cal F}$of the form${\cal F}$R= (F; +,.,0, 1,P)PεRwhereRis some collection of definable sets in${\cal F}$. We give examples and nonexamples and establish some criteria for definability of D. Finally, using the tools developed in the article, we prove that under the assumption of inductiveness of Th (${\cal F}$R) model completeness is a necessary condition for definability of D. This (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • An exposition of Hrushovskiʼs New Strongly Minimal Set.Martin Ziegler - 2013 - Annals of Pure and Applied Logic 164 (12):1507-1519.
    We give an exposition of Hrushovskiʼs New Strongly Minimal Set : A strongly minimal theory which is not locally modular but does not interpret an infinite field. We give an exposition of his construction.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Ramsey Theory for Countable Binary Homogeneous Structures.Jean A. Larson - 2005 - Notre Dame Journal of Formal Logic 46 (3):335-352.
    Countable homogeneous relational structures have been studied by many people. One area of focus is the Ramsey theory of such structures. After a review of background material, a partition theorem of Laflamme, Sauer, and Vuksanovic for countable homogeneous binary relational structures is discussed with a focus on the size of the set of unavoidable colors.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Notes on quasiminimality and excellence.John T. Baldwin - 2004 - Bulletin of Symbolic Logic 10 (3):334-366.
    This paper ties together much of the model theory of the last 50 years. Shelah's attempts to generalize the Morley theorem beyond first order logic led to the notion of excellence, which is a key to the structure theory of uncountable models. The notion of Abstract Elementary Class arose naturally in attempting to prove the categoricity theorem for L ω 1 ,ω (Q). More recently, Zilber has attempted to identify canonical mathematical structures as those whose theory (in an appropriate logic) (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Indifference to symmetry in Hrushovski's ab initio construction.Omer Mermelstein - 2022 - Annals of Pure and Applied Logic 173 (1):103040.
    Download  
     
    Export citation  
     
    Bookmark  
  • Strongly minimal Steiner systems I: Existence.John Baldwin & Gianluca Paolini - 2021 - Journal of Symbolic Logic 86 (4):1486-1507.
    A linear space is a system of points and lines such that any two distinct points determine a unique line; a Steiner k-system is a linear space such that each line has size exactly k. Clearly, as a two-sorted structure, no linear space can be strongly minimal. We formulate linear spaces in a vocabulary $\tau $ with a single ternary relation R. We prove that for every integer k there exist $2^{\aleph _0}$ -many integer valued functions $\mu $ such that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Generalised imaginaries and galois cohomology.Dmitry Sustretov - 2016 - Journal of Symbolic Logic 81 (3):917-935.
    The objective of this article is to characterise elimination of finite generalised imaginaries as defined in [9] in terms of group cohomology. As an application, I consider series of Zariski geometries constructed [10, 23, 24] by Hrushovski and Zilber and indicate how their nondefinability in algebraically closed fields is connected to eliminability of certain generalised imaginaries.
    Download  
     
    Export citation  
     
    Bookmark  
  • Completeness and categoricity (in power): Formalization without foundationalism.John T. Baldwin - 2014 - Bulletin of Symbolic Logic 20 (1):39-79.
    We propose a criterion to regard a property of a theory (in first or second order logic) as virtuous: the property must have significant mathematical consequences for the theory (or its models). We then rehearse results of Ajtai, Marek, Magidor, H. Friedman and Solovay to argue that for second order logic, ‘categoricity’ has little virtue. For first order logic, categoricity is trivial; but ‘categoricity in power’ has enormous structural consequences for any of the theories satisfying it. The stability hierarchy extends (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Ample thoughts.Daniel Palacín & Frank O. Wagner - 2013 - Journal of Symbolic Logic 78 (2):489-510.
    Non-$n$-ampleness as defined by Pillay [20] and Evans [5] is preserved under analysability. Generalizing this to a more general notion of $\Sigma$-ampleness, this gives an immediate proof for all simple theories of a weakened version of the Canonical Base Property (CBP) proven by Chatzidakis [4] for types of finite SU-rank. This is then applied to the special case of groups.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Towards a finer classification of strongly minimal sets.John T. Baldwin & Viktor V. Verbovskiy - 2024 - Annals of Pure and Applied Logic 175 (2):103376.
    Download  
     
    Export citation  
     
    Bookmark  
  • Constructing ω-stable structures: model completeness.John T. Baldwin & Kitty Holland - 2004 - Annals of Pure and Applied Logic 125 (1-3):159-172.
    The projective plane of Baldwin 695) is model complete in a language with additional constant symbols. The infinite rank bicolored field of Poizat 1339) is not model complete. The finite rank bicolored fields of Baldwin and Holland 371; Notre Dame J. Formal Logic , to appear) are model complete. More generally, the finite rank expansions of a strongly minimal set obtained by adding a ‘random’ unary predicate are almost strongly minimal and model complete provided the strongly minimal set is ‘well-behaved’ (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On omega-categorical simple theories.Daniel Palacín - 2012 - Archive for Mathematical Logic 51 (7-8):709-717.
    In the present paper we shall prove that countable ω-categorical simple CM-trivial theories and countable ω-categorical simple theories with strong stable forking are low. In addition, we observe that simple theories of bounded finite weight are low.
    Download  
     
    Export citation  
     
    Bookmark  
  • Directed free pseudospaces.Romain Grunert - 2010 - Journal of Symbolic Logic 75 (4):1176-1198.
    We show that the free pseudospace is a reduct of a 1-based theory. This answers a question of David M. Evans. The theory is superstable, but not ω-stable.
    Download  
     
    Export citation  
     
    Bookmark  
  • Stable Definability and Generic Relations.Byunghan Kim & Rahim Moosa - 2007 - Journal of Symbolic Logic 72 (4):1163 - 1176.
    An amalgamation base p in a simple theory is stably definable if its canonical base is interdefinable with the set of canonical parameters for the ϕ-definitions of p as ϕ ranges through all stable formulae. A necessary condition for stably definability is given and used to produce an example of a supersimple theory with stable forking having types that are not stably definable. This answers negatively a question posed in [8]. A criterion for and example of a stably definable amalgamation (...)
    Download  
     
    Export citation  
     
    Bookmark