Switch to: Citations

Add references

You must login to add references.
  1. Logicism and the ontological commitments of arithmetic.Harold T. Hodes - 1984 - Journal of Philosophy 81 (3):123-149.
    Download  
     
    Export citation  
     
    Bookmark   126 citations  
  • The Consistency of predicative fragments of frege’s grundgesetze der arithmetik.Richard G. Heck - 1996 - History and Philosophy of Logic 17 (1-2):209-220.
    As is well-known, the formal system in which Frege works in his Grundgesetze der Arithmetik is formally inconsistent, Russell’s Paradox being derivable in it.This system is, except for minor differ...
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • (1 other version)Frege’s Theorem: An Introduction.Richard G. Heck - 1999 - The Harvard Review of Philosophy 7 (1):56-73.
    A brief, non-technical introduction to technical and philosophical aspects of Frege's philosophy of arithmetic. The exposition focuses on Frege's Theorem, which states that the axioms of arithmetic are provable, in second-order logic, from a single non-logical axiom, "Hume's Principle", which itself is: The number of Fs is the same as the number of Gs if, and only if, the Fs and Gs are in one-one correspondence.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Is Hume's principle analytic?Crispin Wright - 1999 - Notre Dame Journal of Formal Logic 40 (1):307-333.
    This paper is a reply to George Boolos's three papers (Boolos (1987a, 1987b, 1990a)) concerned with the status of Hume's Principle. Five independent worries of Boolos concerning the status of Hume's Principle as an analytic truth are identified and discussed. Firstly, the ontogical concern about the commitments of Hume's Principle. Secondly, whether Hume's Principle is in fact consistent and whether the commitment to the universal number by adopting Hume's Principle might be problematic. Also the so-called `surplus content' worry is discussed, (...)
    Download  
     
    Export citation  
     
    Bookmark   54 citations  
  • (1 other version)Is Hume's principle analytic?G. Boolos - 1998 - Logic, Logic, and Logic:301--314.
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • On the consistency of the Δ11-CA fragment of Frege's grundgesetze.Fernando Ferreira & Kai F. Wehmeier - 2002 - Journal of Philosophical Logic 31 (4):301-311.
    It is well known that Frege's system in the Grundgesetze der Arithmetik is formally inconsistent. Frege's instantiation rule for the second-order universal quantifier makes his system, except for minor differences, full (i.e., with unrestricted comprehension) second-order logic, augmented by an abstraction operator that abides to Frege's basic law V. A few years ago, Richard Heck proved the consistency of the fragment of Frege's theory obtained by restricting the comprehension schema to predicative formulae. He further conjectured that the more encompassing Δ₁¹-comprehension (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Consistent fragments of grundgesetze and the existence of non-logical objects.Kai F. Wehmeier - 1999 - Synthese 121 (3):309-328.
    In this paper, I consider two curious subsystems ofFrege's Grundgesetze der Arithmetik: Richard Heck's predicative fragment H, consisting of schema V together with predicative second-order comprehension (in a language containing a syntactical abstraction operator), and a theory T in monadic second-order logic, consisting of axiom V and 1 1-comprehension (in a language containing anabstraction function). I provide a consistency proof for the latter theory, thereby refuting a version of a conjecture by Heck. It is shown that both Heck and T (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Frege's new science.G. Aldo Antonelli & Robert C. May - 2000 - Notre Dame Journal of Formal Logic 41 (3):242-270.
    In this paper, we explore Fregean metatheory, what Frege called the New Science. The New Science arises in the context of Frege’s debate with Hilbert over independence proofs in geometry and we begin by considering their dispute. We propose that Frege’s critique rests on his view that language is a set of propositions, each immutably equipped with a truth value (as determined by the thought it expresses), so to Frege it was inconceivable that axioms could even be considered to be (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Frege's unofficial arithmetic.Agustín Rayo - 2002 - Journal of Symbolic Logic 67 (4):1623-1638.
    I show that any sentence of nth-order (pure or applied) arithmetic can be expressed with no loss of compositionality as a second-order sentence containing no arithmetical vocabulary, and use this result to prove a completeness theorem for applied arithmetic. More specifically, I set forth an enriched second-order language L, a sentence A of L (which is true on the intended interpretation of L), and a compositionally recursive transformation Tr defined on formulas of L, and show that they have the following (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Developing arithmetic in set theory without infinity: some historical remarks.Charles Parsons - 1987 - History and Philosophy of Logic 8 (2):201-213.
    In this paper some of the history of the development of arithmetic in set theory is traced, particularly with reference to the problem of avoiding the assumption of an infinite set. Although the standard method of singling out a sequence of sets to be the natural numbers goes back to Zermelo, its development was more tortuous than is generally believed. We consider the development in the light of three desiderata for a solution and argue that they can probably not all (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • (2 other versions)Frege's theory of concepts and objects and the interpretation of second-order logic.William Demopoulus & William Bell - 1993 - Philosophia Mathematica 1 (2):139-156.
    This paper casts doubt on a recent criticism of Frege's theory of concepts and extensions by showing that it misses one of Frege's most important contributions: the derivation of the infinity of the natural numbers. We show how this result may be incorporated into the conceptual structure of Zermelo- Fraenkel Set Theory. The paper clarifies the bearing of the development of the notion of a real-valued function on Frege's theory of concepts; it concludes with a brief discussion of the claim (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The Consistency of predicative fragments of frege's grundgesetze der arithmetik.Richard Heck Jnr - 1996 - History and Philosophy of Logic 17 (1 & 2):209-220.
    As is well-known, the formal system in which Frege works in his Grundgesetze der Arithmetik is formally inconsistent, Russell's Paradox being derivable in it.This system is, except for minor differences, full second-order logic, augmented by a single non-logical axiom, Frege's Axiom V. It has been known for some time now that the first-order fragment of the theory is consistent. The present paper establishes that both the simple and the ramified predicative second-order fragments are consistent, and that Robinson arithmetic, Q, is (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations