Switch to: Citations

Add references

You must login to add references.
  1. Reverse mathematics and ordinal exponentiation.Jeffry L. Hirst - 1994 - Annals of Pure and Applied Logic 66 (1):1-18.
    Simpson has claimed that “ATR0 is the weakest set of axioms which permits the development of a decent theory of countable ordinals” [8]. This paper provides empirical support for Simpson's claim. In particular, Cantor's Normal Form Theorem and Sherman's Inequality for countable well-orderings are both equivalent to ATR0. The proofs of these results require a substantial development of ordinal exponentiation and a strengthening of the comparability result in [3].
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Subsystems of Second Order Arithmetic.Stephen George Simpson - 1998 - Springer Verlag.
    Stephen George Simpson. with definition 1.2.3 and the discussion following it. For example, taking 90(n) to be the formula n §E Y, we have an instance of comprehension, VYEIXVn(n€X<—>n¢Y), asserting that for any given set Y there exists a ...
    Download  
     
    Export citation  
     
    Bookmark   131 citations  
  • Subsystems of Second Order Arithmetic.Stephen G. Simpson - 1999 - Studia Logica 77 (1):129-129.
    Download  
     
    Export citation  
     
    Bookmark   236 citations  
  • (1 other version)Some results on cut-elimination, provable well-orderings, induction and reflection.Toshiyasu Arai - 1998 - Annals of Pure and Applied Logic 95 (1-3):93-184.
    We gather the following miscellaneous results in proof theory from the attic.1. 1. A provably well-founded elementary ordering admits an elementary order preserving map.2. 2. A simple proof of an elementary bound for cut elimination in propositional calculus and its applications to separation problem in relativized bounded arithmetic below S21.3. 3. Equivalents for Bar Induction, e.g., reflection schema for ω logic.4. 4. Direct computations in an equational calculus PRE and a decidability problem for provable inequations in PRE.5. 5. Intuitionistic fixed (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Reverse mathematics and well-ordering principles: A pilot study.Bahareh Afshari & Michael Rathjen - 2009 - Annals of Pure and Applied Logic 160 (3):231-237.
    The larger project broached here is to look at the generally sentence “if X is well-ordered then f is well-ordered”, where f is a standard proof-theoretic function from ordinals to ordinals. It has turned out that a statement of this form is often equivalent to the existence of countable coded ω-models for a particular theory Tf whose consistency can be proved by means of a cut elimination theorem in infinitary logic which crucially involves the function f. To illustrate this theme, (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Proof Theory.Gaisi Takeuti - 1990 - Studia Logica 49 (1):160-161.
    Download  
     
    Export citation  
     
    Bookmark   166 citations  
  • Reverse mathematics and well-ordering principles.Michael Rathjen & Andreas Weiermann - 2011 - In S. B. Cooper & Andrea Sorbi (eds.), Computability in Context: Computation and Logic in the Real World. World Scientific.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Systems of predicative analysis, II: Representations of ordinals.Solomon Feferman - 1968 - Journal of Symbolic Logic 33 (2):193-220.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • (1 other version)Proof Theory and Logical Complexity. [REVIEW]Helmut Pfeifer - 1991 - Annals of Pure and Applied Logic 53 (4):197.
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • The veblen functions for computability theorists.Alberto Marcone & Antonio Montalbán - 2011 - Journal of Symbolic Logic 76 (2):575 - 602.
    We study the computability-theoretic complexity and proof-theoretic strength of the following statements: (1) "If X is a well-ordering, then so is ε X ", and (2) "If X is a well-ordering, then so is φ(α, X)", where α is a fixed computable ordinal and φ represents the two-placed Veblen function. For the former statement, we show that ω iterations of the Turing jump are necessary in the proof and that the statement is equivalent to ${\mathrm{A}\mathrm{C}\mathrm{A}}_{0}^{+}$ over RCA₀. To prove the (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations