Switch to: References

Add citations

You must login to add citations.
  1. Transfinite dependent choice and $ømega$-model reflection.Christian Rüede - 2002 - Journal of Symbolic Logic 67 (3):1153-1168.
    In this paper we present some metapredicative subsystems of analysis. We deal with reflection principles, $\omega-model$ existence axioms (limit axioms) and axioms asserting the existence of hierarchies. We show several equivalences among the introduced subsystems. In particular we prove the equivalence of $\sum_1^1$ transfinite dependent choice and $\prod_2^1$ reflection on $\omega-models$ of $\sum_1^1-DC$.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • How strong are single fixed points of normal functions?Anton Freund - 2020 - Journal of Symbolic Logic 85 (2):709-732.
    In a recent paper by M. Rathjen and the present author it has been shown that the statement “every normal function has a derivative” is equivalent to $\Pi ^1_1$ -bar induction. The equivalence was proved over $\mathbf {ACA_0}$, for a suitable representation of normal functions in terms of dilators. In the present paper, we show that the statement “every normal function has at least one fixed point” is equivalent to $\Pi ^1_1$ -induction along the natural numbers.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The maximal linear extension theorem in second order arithmetic.Alberto Marcone & Richard A. Shore - 2011 - Archive for Mathematical Logic 50 (5-6):543-564.
    We show that the maximal linear extension theorem for well partial orders is equivalent over RCA0 to ATR0. Analogously, the maximal chain theorem for well partial orders is equivalent to ATR0 over RCA0.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Open questions in reverse mathematics.Antonio Montalbán - 2011 - Bulletin of Symbolic Logic 17 (3):431-454.
    We present a list of open questions in reverse mathematics, including some relevant background information for each question. We also mention some of the areas of reverse mathematics that are starting to be developed and where interesting open question may be found.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • (1 other version)Ordered groups: A case study in reverse mathematics.Reed Solomon - 1999 - Bulletin of Symbolic Logic 5 (1):45-58.
    The fundamental question in reverse mathematics is to determine which set existence axioms are required to prove particular theorems of mathematics. In addition to being interesting in their own right, answers to this question have consequences in both effective mathematics and the foundations of mathematics. Before discussing these consequences, we need to be more specific about the motivating question.Reverse mathematics is useful for studying theorems of either countable or essentially countable mathematics. Essentially countable mathematics is a vague term that is (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • An order-theoretic characterization of the Howard–Bachmann-hierarchy.Jeroen Van der Meeren, Michael Rathjen & Andreas Weiermann - 2017 - Archive for Mathematical Logic 56 (1-2):79-118.
    In this article we provide an intrinsic characterization of the famous Howard–Bachmann ordinal in terms of a natural well-partial-ordering by showing that this ordinal can be realized as a maximal order type of a class of generalized trees with respect to a homeomorphic embeddability relation. We use our calculations to draw some conclusions about some corresponding subsystems of second order arithmetic. All these subsystems deal with versions of light-face Π11\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPi ^1_1$$\end{document}-comprehension.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Regressive versions of Hindman’s theorem.Lorenzo Carlucci & Leonardo Mainardi - 2024 - Archive for Mathematical Logic 63 (3):447-472.
    When the Canonical Ramsey’s Theorem by Erdős and Rado is applied to regressive functions, one obtains the Regressive Ramsey’s Theorem by Kanamori and McAloon. Taylor proved a “canonical” version of Hindman’s Theorem, analogous to the Canonical Ramsey’s Theorem. We introduce the restriction of Taylor’s Canonical Hindman’s Theorem to a subclass of the regressive functions, the $$\lambda $$ λ -regressive functions, relative to an adequate version of min-homogeneity and prove some results about the Reverse Mathematics of this Regressive Hindman’s Theorem and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Derivatives of normal functions and $$\omega $$ ω -models.Toshiyasu Arai - 2018 - Archive for Mathematical Logic 57 (5-6):649-664.
    In this note the well-ordering principle for the derivative \ of normal functions \ on ordinals is shown to be equivalent to the existence of arbitrarily large countable coded \-models of the well-ordering principle for the function \.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Weak and strong versions of Effective Transfinite Recursion.Patrick Uftring - 2023 - Annals of Pure and Applied Logic 174 (4):103232.
    Download  
     
    Export citation  
     
    Bookmark  
  • 1995–1996 Annual Meeting of the Association for Symbolic Logic.H. Jerome Keisler - 1996 - Bulletin of Symbolic Logic 2 (4):448-472.
    Download  
     
    Export citation  
     
    Bookmark  
  • Reverse mathematics and well-ordering principles: A pilot study.Bahareh Afshari & Michael Rathjen - 2009 - Annals of Pure and Applied Logic 160 (3):231-237.
    The larger project broached here is to look at the generally sentence “if X is well-ordered then f is well-ordered”, where f is a standard proof-theoretic function from ordinals to ordinals. It has turned out that a statement of this form is often equivalent to the existence of countable coded ω-models for a particular theory Tf whose consistency can be proved by means of a cut elimination theorem in infinitary logic which crucially involves the function f. To illustrate this theme, (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On the Indecomposability of $\omega^{n}$.Jared R. Corduan & François G. Dorais - 2012 - Notre Dame Journal of Formal Logic 53 (3):373-395.
    We study the reverse mathematics of pigeonhole principles for finite powers of the ordinal $\omega$ . Four natural formulations are presented, and their relative strengths are compared. In the analysis of the pigeonhole principle for $\omega^{2}$ , we uncover two weak variants of Ramsey’s theorem for pairs.
    Download  
     
    Export citation  
     
    Bookmark  
  • Well ordering principles and -statements: A pilot study.Anton Freund - 2021 - Journal of Symbolic Logic 86 (2):709-745.
    In previous work, the author has shown that $\Pi ^1_1$ -induction along $\mathbb N$ is equivalent to a suitable formalization of the statement that every normal function on the ordinals has a fixed point. More precisely, this was proved for a representation of normal functions in terms of Girard’s dilators, which are particularly uniform transformations of well orders. The present paper works on the next type level and considers uniform transformations of dilators, which are called 2-ptykes. We show that $\Pi (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Weak Well Orders and Fraïssé’s Conjecture.Anton Freund & Davide Manca - forthcoming - Journal of Symbolic Logic:1-16.
    The notion of countable well order admits an alternative definition in terms of embeddings between initial segments. We use the framework of reverse mathematics to investigate the logical strength of this definition and its connection with Fraïssé’s conjecture, which has been proved by Laver. We also fill a small gap in Shore’s proof that Fraïssé’s conjecture implies arithmetic transfinite recursion over $\mathbf {RCA}_0$, by giving a new proof of $\Sigma ^0_2$ -induction.
    Download  
     
    Export citation  
     
    Bookmark  
  • The veblen functions for computability theorists.Alberto Marcone & Antonio Montalbán - 2011 - Journal of Symbolic Logic 76 (2):575 - 602.
    We study the computability-theoretic complexity and proof-theoretic strength of the following statements: (1) "If X is a well-ordering, then so is ε X ", and (2) "If X is a well-ordering, then so is φ(α, X)", where α is a fixed computable ordinal and φ represents the two-placed Veblen function. For the former statement, we show that ω iterations of the Turing jump are necessary in the proof and that the statement is equivalent to ${\mathrm{A}\mathrm{C}\mathrm{A}}_{0}^{+}$ over RCA₀. To prove the (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Computable aspects of the Bachmann–Howard principle.Anton Freund - 2019 - Journal of Mathematical Logic 20 (2):2050006.
    We have previously established that [Formula: see text]-comprehension is equivalent to the statement that every dilator has a well-founded Bachmann–Howard fixed point, over [Formula: see text]. In this paper, we show that the base theory can be lowered to [Formula: see text]. We also show that the minimal Bachmann–Howard fixed point of a dilator [Formula: see text] can be represented by a notation system [Formula: see text], which is computable relative to [Formula: see text]. The statement that [Formula: see text] (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Indecomposable linear orderings and hyperarithmetic analysis.Antonio Montalbán - 2006 - Journal of Mathematical Logic 6 (1):89-120.
    A statement of hyperarithmetic analysis is a sentence of second order arithmetic S such that for every Y⊆ω, the minimum ω-model containing Y of RCA0 + S is HYP, the ω-model consisting of the sets hyperarithmetic in Y. We provide an example of a mathematical theorem which is a statement of hyperarithmetic analysis. This statement, that we call INDEC, is due to Jullien [13]. To the author's knowledge, no other already published, purely mathematical statement has been found with this property (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Ordinal inequalities, transfinite induction, and reverse mathematics.Jeffry Hirst - 1999 - Journal of Symbolic Logic 64 (2):769-774.
    If α and β are ordinals, α ≤ β, and $\beta \nleq \alpha$ , then α + 1 ≤ β. The first result of this paper shows that the restriction of this statement to countable well orderings is provably equivalent to ACA 0 , a subsystem of second order arithmetic introduced by Friedman. The proof of the equivalence is reminiscent of Dekker's construction of a hypersimple set. An application of the theorem yields the equivalence of the set comprehension scheme ACA (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A note on ordinal exponentiation and derivatives of normal functions.Anton Freund - 2020 - Mathematical Logic Quarterly 66 (3):326-335.
    Michael Rathjen and the present author have shown that ‐bar induction is equivalent to (a suitable formalization of) the statement that every normal function has a derivative, provably in. In this note we show that the base theory can be weakened to. Our argument makes crucial use of a normal function f with and. We shall also exhibit a normal function g with and.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)and the existence of strong divisible closures (ACA0). Section 8 deals more directly with computability issues and discusses the relationship between Π0. [REVIEW]Reed Solomon - 1999 - Bulletin of Symbolic Logic 5 (1).
    Download  
     
    Export citation  
     
    Bookmark