Switch to: Citations

Add references

You must login to add references.
  1. Mathias forcing and combinatorial covering properties of filters.David Chodounský, Dušan Repovš & Lyubomyr Zdomskyy - 2015 - Journal of Symbolic Logic 80 (4):1398-1410.
    We give topological characterizations of filters${\cal F}$onωsuch that the Mathias forcing${M_{\cal F}}$adds no dominating reals or preserves ground model unbounded families. This allows us to answer some questions of Brendle, Guzmán, Hrušák, Martínez, Minami, and Tsaban.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Canjar Filters.Osvaldo Guzmán, Michael Hrušák & Arturo Martínez-Celis - 2017 - Notre Dame Journal of Formal Logic 58 (1):79-95.
    If $\mathcal{F}$ is a filter on $\omega$, we say that $\mathcal{F}$ is Canjar if the corresponding Mathias forcing does not add a dominating real. We prove that any Borel Canjar filter is $F_{\sigma}$, solving a problem of Hrušák and Minami. We give several examples of Canjar and non-Canjar filters; in particular, we construct a $\mathsf{MAD}$ family such that the corresponding Mathias forcing adds a dominating real. This answers a question of Brendle. Then we prove that in all the “classical” models (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Products of hurewicz spaces in the Laver model.Dušan Repovš & Lyubomyr Zdomskyy - 2017 - Bulletin of Symbolic Logic 23 (3):324-333.
    This article is devoted to the interplay between forcing with fusion and combinatorial covering properties. We illustrate this interplay by proving that in the Laver model for the consistency of the Borel’s conjecture, the product of any two metrizable spaces with the Hurewicz property has the Menger property.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Cohen-stable families of subsets of integers.Milos Kurilic - 2001 - Journal of Symbolic Logic 66 (1):257-270.
    A maximal almost disjoint (mad) family $\mathscr{A} \subseteq [\omega]^\omega$ is Cohen-stable if and only if it remains maximal in any Cohen generic extension. Otherwise it is Cohen-unstable. It is shown that a mad family, A, is Cohen-unstable if and only if there is a bijection G from ω to the rationals such that the sets G[A], A ∈A are nowhere dense. An ℵ 0 -mad family, A, is a mad family with the property that given any countable family $\mathscr{B} \subset (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Mob families and mad families.Jörg Brendle - 1998 - Archive for Mathematical Logic 37 (3):183-197.
    We show the consistency of ${\frak o} <{\frak d}$ where ${\frak o}$ is the size of the smallest off-branch family, and ${\frak d}$ is as usual the dominating number. We also prove the consistency of ${\frak b} < {\frak a}$ with large continuum. Here, ${\frak b}$ is the unbounding number, and ${\frak a}$ is the almost disjointness number.
    Download  
     
    Export citation  
     
    Bookmark   16 citations