Switch to: Citations

References in:

The Role of Decoherence in Quantum Mechanics

In Ed Zalta (ed.), Stanford Encyclopedia of Philosophy. Stanford, CA: Stanford Encyclopedia of Philosophy (2012)

Add references

You must login to add references.
  1. Quantum Mechanics and Experience.David Z. Albert - 1992 - Harvard Up.
    Presents a guide to the basics of quantum mechanics and measurement.
    Download  
     
    Export citation  
     
    Bookmark   267 citations  
  • The End of Time: The Next Revolution in Physics.Julian Barbour - 1999 - Weidenfeld & Nicholson.
    In a revolutionary new book, a theoretical physicist attacks the foundations of modern scientific theory, including the notion of time, as he shares evidence of ...
    Download  
     
    Export citation  
     
    Bookmark   137 citations  
  • (1 other version)Many Worlds?: Everett, Quantum Theory, & Reality.Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.) - 2010 - Oxford, GB: Oxford University Press UK.
    What would it mean to apply quantum theory, without restriction and without involving any notion of measurement and state reduction, to the whole universe? What would realism about the quantum state then imply? This book brings together an illustrious team of philosophers and physicists to debate these questions. The contributors broadly agree on the need, or aspiration, for a realist theory that unites micro- and macro-worlds. But they disagree on what this implies. Some argue that if unitary quantum evolution has (...)
    Download  
     
    Export citation  
     
    Bookmark   96 citations  
  • Time’s arrow and Archimedes’ point.Huw Price - 1996 - Philosophical and Phenomenological Research 59 (4):1093-1096.
    Download  
     
    Export citation  
     
    Bookmark   308 citations  
  • On the Problem of Hidden Variables in Quantum Mechanics.J. S. Bell - 2004 - In John Stewart Bell (ed.), Speakable and unspeakable in quantum mechanics: collected papers on quantum philosophy. New York: Cambridge University Press. pp. 1--13.
    Download  
     
    Export citation  
     
    Bookmark   272 citations  
  • (1 other version)Discussion with Einstein on Epistemological Problems in Atomic Physics.Niels Bohr - 1949 - In Paul Arthur Schilpp (ed.), The Library of Living Philosophers, Volume 7. Albert Einstein: Philosopher-Scientist. Open Court. pp. 199--241.
    Download  
     
    Export citation  
     
    Bookmark   170 citations  
  • Quantum theory at the crossroads: reconsidering the 1927 Solvay conference.Guido Bacciagaluppi - 2007 - New York: Cambridge University Press. Edited by Antony Valentini.
    The 1927 Solvay conference was perhaps the most important meeting in the history of quantum theory. Contrary to popular belief, the interpretation of quantum theory was not settled at this conference, and no consensus was reached. Instead, a range of sharply conflicting views were presented and extensively discussed, including de Broglie's pilot-wave theory, Born and Heisenberg's quantum mechanics, and Schrödinger's wave mechanics. Today, there is no longer an established or dominant interpretation of quantum theory, so it is important to re-evaluate (...)
    Download  
     
    Export citation  
     
    Bookmark   78 citations  
  • Quantum Theory of Probability and Decisions.David Deutsch - 1999 - Proceedings of the Royal Society of London:3129--37.
    Download  
     
    Export citation  
     
    Bookmark   145 citations  
  • Quantum probability from subjective likelihood: Improving on Deutsch's proof of the probability rule.David Wallace - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):311-332.
    I present a proof of the quantum probability rule from decision-theoretic assumptions, in the context of the Everett interpretation. The basic ideas behind the proof are those presented in Deutsch's recent proof of the probability rule, but the proof is simpler and proceeds from weaker decision-theoretic assumptions. This makes it easier to discuss the conceptual ideas involved in the proof, and to show that they are defensible.
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • (1 other version)The role of decoherence in quantum mechanics.Guido Bacciagaluppi - 2003 - Stanford Encyclopedia of Philosophy.
    Interference phenomena are a well-known and crucial feature of quantum mechanics, the two-slit experiment providing a standard example. There are situations, however, in which interference effects are (artificially or spontaneously) suppressed. We shall need to make precise what this means, but the theory of decoherence is the study of (spontaneous) interactions between a system and its environment that lead to such suppression of interference. This study includes detailed modelling of system-environment interactions, derivation of equations (‘master equations’) for the (reduced) state (...)
    Download  
     
    Export citation  
     
    Bookmark   75 citations  
  • (1 other version)Quantum Mechanics and Experience.[author unknown] - 1994 - Erkenntnis 40 (3):403-406.
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Philosophy of quantum mechanics.David Wallace - 2008 - In Dean Rickles (ed.), The Ashgate Companion to Contemporary Philosophy of Physics. Ashgate. pp. 16--98.
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Probability and the interpretation of quantum mechanics.Arthur Fine - 1973 - British Journal for the Philosophy of Science 24 (1):1-37.
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Implications of quantum theory in the foundations of statistical mechanics.David Wallace - manuscript
    An investigation is made into how the foundations of statistical mechanics are affected once we treat classical mechanics as an approximation to quantum mechanics in certain domains rather than as a theory in its own right; this is necessary if we are to understand statistical-mechanical systems in our own world. Relevant structural and dynamical differences are identified between classical and quantum mechanics (partly through analysis of technical work on quantum chaos by other authors). These imply that quantum mechanics significantly affects (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Probability in Everettian Quantum Mechanics.Peter J. Lewis - 2010 - Manuscrito 33 (1):285--306.
    The main difficulty facing no-collapse theories of quantum mechanics in the Everettian tradition concerns the role of probability within a theory in which every possible outcome of a measurement actually occurs. The problem is two-fold: First, what do probability claims mean within such a theory? Second, what ensures that the probabilities attached to measurement outcomes match those of standard quantum mechanics? Deutsch has recently proposed a decision-theoretic solution to the second problem, according to which agents are rationally required to weight (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Insolubility of the quantum measurement problem for unsharp observables.Paul Busch & Abner Shimony - 1996 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 27 (4):397-404.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Delocalized Properties in the Modal Interpretation of a Continuous Model of Decoherence.Guido Bacciagaluppi - 2000 - Foundations of Physics 30 (9):1431-1444.
    I investigate the character of the definite properties defined by the Basic Rule in the Vermaas and Dieks' (1995) version of the modal interpretation of quantum mechanics, specifically for the case of the continuous model of decoherence by Joos and Zeh (1985). While this model suggests that the characteristic length that might be associated with the localisation of an individual system is the coherence length of the state (which converges rapidly to the thermal de Broglie wavelength), I show in an (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • (2 other versions)Die naturphilosophischen Grundlagen der Quantenmechanik.Grete Hermann - 1940 - Journal of Unified Science (Erkenntnis) 8 (5):379-383.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Collapse theories as beable theories.Guido Bacciagaluppi - 2010 - Manuscrito 33 (1):19-54.
    I discuss the interpretation of spontaneous collapse theories, with particular reference to Bell's suggestion that the stochastic jumps in the evolution of the wave function should be considered as local beables of the theory. I develop this analogy in some detail for the case of non-relativistic GRW-type theories, using a generalisation of Bell's notion of beables to POV measures. In the context of CSL-type theories, this strategy appears to fail, and I discuss instead Ghirardi and co-workers' mass-density interpretation and its (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • QBism, the Perimeter of Quantum Bayesianism.Christopher A. Fuchs - 2010
    This article summarizes the Quantum Bayesian point of view of quantum mechanics, with special emphasis on the view's outer edges---dubbed QBism. QBism has its roots in personalist Bayesian probability theory, is crucially dependent upon the tools of quantum information theory, and most recently, has set out to investigate whether the physical world might be of a type sketched by some false-started philosophies of 100 years ago (pragmatism, pluralism, nonreductionism, and meliorism). Beyond conceptual issues, work at Perimeter Institute is focused on (...)
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Review of L. S. Schulman: Time's Arrows and Quantum Measurement[REVIEW]Huw Price - 1998 - British Journal for the Philosophy of Science 49 (3):522-525.
    Download  
     
    Export citation  
     
    Bookmark   21 citations