Switch to: References

Add citations

You must login to add citations.
  1. Respecting One’s Fellow: QBism’s Analysis of Wigner’s Friend.John B. DeBrota, Christopher A. Fuchs & Rüdiger Schack - 2020 - Foundations of Physics 50 (12):1859-1874.
    According to QBism, quantum states, unitary evolutions, and measurement operators are all understood as personal judgments of the agent using the formalism. Meanwhile, quantum measurement outcomes are understood as the personal experiences of the same agent. Wigner’s conundrum of the friend, in which two agents ostensibly have different accounts of whether or not there is a measurement outcome, thus poses no paradox for QBism. Indeed the resolution of Wigner’s original thought experiment was central to the development of QBist thinking. The (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Negativity Bounds for Weyl–Heisenberg Quasiprobability Representations.John B. DeBrota & Christopher A. Fuchs - 2017 - Foundations of Physics 47 (8):1009-1030.
    The appearance of negative terms in quasiprobability representations of quantum theory is known to be inevitable, and, due to its equivalence with the onset of contextuality, of central interest in quantum computation and information. Until recently, however, nothing has been known about how much negativity is necessary in a quasiprobability representation. Zhu :120404, 2016) proved that the upper and lower bounds with respect to one type of negativity measure are saturated by quasiprobability representations which are in one-to-one correspondence with the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Reconsidering No-Go Theorems from a Practical Perspective.Michael E. Cuffaro - 2018 - British Journal for the Philosophy of Science 69 (3):633-655.
    I argue that our judgements regarding the locally causal models that are compatible with a given constraint implicitly depend, in part, on the context of inquiry. It follows from this that certain quantum no-go theorems, which are particularly striking in the traditional foundational context, have no force when the context switches to a discussion of the physical systems we are capable of building with the aim of classically reproducing quantum statistics. I close with a general discussion of the possible implications (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Interview with physicist Christopher Fuchs.Robert P. Crease & James Sares - 2021 - Continental Philosophy Review 54 (4):541-561.
    QBism is an interpretation of quantum mechanics that posits quantum probabilities as subjective Bayesian probabilities, whence its name. By avoiding experientially unfulfilled speculations about what exists prior to measurement, QBism seems to make a close encounter with the phenomenological method. What follows is an interview with QBism’s founder and principal champion, the physicist Christopher Fuchs.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The View from a Wigner Bubble.Eric G. Cavalcanti - 2021 - Foundations of Physics 51 (2):1-31.
    In a recent no-go theorem [Bong et al., Nature Physics (2020)], we proved that the predictions of unitary quantum mechanics for an extended Wigner’s friend scenario are incompatible with any theory satisfying three metaphysical assumptions, the conjunction of which we call “Local Friendliness”: Absoluteness of Observed Events, Locality and No-Superdeterminism. In this paper (based on an invited talk for the QBism jubilee at the 2019 Växjö conference) I discuss the implications of this theorem for QBism, as seen from the point (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Simon Friederich: Interpreting Quantum Theory: A Therapeutic Approach: Palgrave Macmillan, New York, 2015, xiii + 202 pp. [REVIEW]Florian Boge - 2017 - Erkenntnis 82 (2):443-449.
    Simon Friederich’s Therapeutic Approach to quantum theory (QT) sheds new light on the status of the quantum state. In particular, Friederich presents revisionary ideas on how to exactly differentiate objective from subjective elements of the theory and thereby improves upon previous stabs at an epistemic interpretation of quantum states. The book not only provides interesting perspectives for the cognoscenti but is also written with sufficient care and free of unnecessary technicalities so as to be accessible and worth reading for the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Is the life-world reduction sufficient in quantum physics?Michel Bitbol - 2021 - Continental Philosophy Review (4):1-18.
    According to Husserl, the epochè must be left incomplete. It is to be performed step by step, thus defining various layers of “reduction.” In phenomenology at least two such layers can be distinguished: the life-world reduction, and the transcendental reduction. Quantum physics was born from a particular variety of the life-world reduction: reduction to observables according to Heisenberg, and reduction to classical-like properties of experimental devices according to Bohr. But QBism has challenged this limited version of the phenomenological reduction advocated (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Is the life-world reduction sufficient in quantum physics?Michel Bitbol - 2020 - Continental Philosophy Review 54 (4):563-580.
    According to Husserl, the epochè (or suspension of judgment) must be left incomplete. It is to be performed step by step, thus defining various layers of “reduction.” In phenomenology at least two such layers can be distinguished: the life-world reduction, and the transcendental reduction. Quantum physics was born from a particular variety of the life-world reduction: reduction to observables according to Heisenberg, and reduction to classical-like properties of experimental devices according to Bohr. But QBism has challenged this limited version of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Zeilinger on Information and Reality.Ali Barzegar, Mostafa Taqavi & Afshin Shafiee - 2020 - Foundations of Science 26 (4):1007-1019.
    According to Zeilinger’s information interpretation of quantum mechanics ‘the distinction between reality and our knowledge of reality, between reality and information, cannot be made. They are in a deep sense indistinguishable’. This is what we call Zeilinger’s thesis. This thesis has been criticized as a lapse into ‘informational immaterialism’ and amounting to nothing more than a tautology. However, we will argue that this criticism is based on a pre-Kantian view of reality, namely metaphysical realism which could be questioned on the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Phenomenological Approach to Epistemic Interpretations of Quantum Mechanics.Ali Barzegar - 2020 - International Studies in the Philosophy of Science 33 (3):175-187.
    Generally, there are two interpretative approaches to quantum theory: psi-ontic and psi-epistemic. According to the psi-ontic interpretations, quantum theory does/should describe or represent what...
    Download  
     
    Export citation  
     
    Bookmark  
  • Wave-functionalism.Valia Allori - 2021 - Synthese 199 (5-6):12271-12293.
    In this paper I present a new perspective for interpreting the wavefunction as a non-material, non-epistemic, non-representational entity. I endorse a functional view according to which the wavefunction is defined by its roles in the theory. I argue that this approach shares some similarities with the nomological account of the wave function as well as with the pragmatist and epistemic approaches to quantum theory, while avoiding the major objections of these alternatives.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • QBism and the limits of scientific realism.David Glick - 2021 - European Journal for Philosophy of Science 11 (2):1-19.
    QBism is an agent-centered interpretation of quantum theory. It rejects the notion that quantum theory provides a God’s eye description of reality and claims instead that it imposes constraints on agents’ subjective degrees of belief. QBism’s emphasis on subjective belief has led critics to dismiss it as antirealism or instrumentalism, or even, idealism or solipsism. The aim of this paper is to consider the relation of QBism to scientific realism. I argue that while QBism is an unhappy fit with a (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Sciences of Observation.Chris Fields - 2018 - Philosophies 3 (4):29.
    Multiple sciences have converged, in the past two decades, on a hitherto mostly unremarked question: what is observation? Here, I examine this evolution, focusing on three sciences: physics, especially quantum information theory, developmental biology, especially its molecular and “evo-devo” branches, and cognitive science, especially perceptual psychology and robotics. I trace the history of this question to the late 19th century, and through the conceptual revolutions of the 20th century. I show how the increasing interdisciplinary focus on the process of extracting (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Minimal Modal Interpretation of Quantum Theory.Jacob Barandes & David Kagan - manuscript
    We introduce a realist, unextravagant interpretation of quantum theory that builds on the existing physical structure of the theory and allows experiments to have definite outcomes but leaves the theory’s basic dynamical content essentially intact. Much as classical systems have specific states that evolve along definite trajectories through configuration spaces, the traditional formulation of quantum theory permits assuming that closed quantum systems have specific states that evolve unitarily along definite trajectories through Hilbert spaces, and our interpretation extends this intuitive picture (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Sporadic SICs and the Normed Division Algebras.Blake C. Stacey - 2017 - Foundations of Physics 47 (8):1060-1064.
    Symmetric informationally complete quantum measurements, or SICs, are mathematically intriguing structures, which in practice have turned out to exhibit even more symmetry than their definition requires. Recently, Zhu classified all the SICs whose symmetry groups act doubly transitively. I show that lattices of integers in the complex numbers, the quaternions and the octonions yield the key parts of these symmetry groups.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Causation and Information: Where Is Biological Meaning to Be Found?Mark Pharoah - 2020 - Biosemiotics 13 (3):309-326.
    The term ‘information’ is used extensively in biology, cognitive science and the philosophy of consciousness in relation to the concepts of ‘meaning’ and ‘causation’. While ‘information’ is a term that serves a useful purpose in specific disciplines, there is much to the concept that is problematic. Part 1 is a critique of the stance that information is an independently existing entity. On this view, and in biological contexts, systems transmit, acquire, assimilate, decode and manipulate it, and in so doing, generate (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Did bohr succeed in defending the completeness of quantum mechanics?Kunihisa Morita - 2020 - Principia: An International Journal of Epistemology 24 (1):51-63.
    This study posits that Bohr failed to defend the completeness of the quantum mechanical description of physical reality against Einstein–Podolsky–Rosen’s paper. Although there are many papers in the literature that focus on Bohr’s argument in his reply to the EPR paper, the purpose of the current paper is not to clarify Bohr’s argument. Instead, I contend that regardless of which interpretation of Bohr’s argument is correct, his defense of the quantum mechanical description of physical reality remained incomplete. For example, a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Why I am not a QBist.Louis Marchildon - 2015 - Foundations of Physics 45 (7):754-761.
    Quantum Bayesianism, or QBism, is a recent development of the epistemic view of quantum states, according to which the state vector represents knowledge about a quantum system, rather than the true state of the system. QBism explicitly adopts the subjective view of probability, wherein probability assignments express an agent’s personal degrees of belief about an event. QBists claim that most if not all conceptual problems of quantum mechanics vanish if we simply take a proper epistemic and probabilistic perspective. Although this (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Towards Better Understanding QBism.Andrei Khrennikov - 2018 - Foundations of Science 23 (1):181-195.
    Recently I posted a paper entitled “External observer reflections on QBism”. As any external observer, I was not able to reflect all features of QBism properly. The comments I received from one of QBism’s creators, C. A. Fuchs, were very valuable to me in better understanding the views of QBists. Some of QBism’s features are very delicate and extracting them from articles of QBists is not a simple task. Therefore, I hope that the second portion of my reflections on QBism (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Bell Experiment and the Limitations of Actors.Inge S. Helland - 2022 - Foundations of Physics 52 (3):1-22.
    The well known Bell experiment with two actors Alice and Bob is considered. First the simple deduction leading to the CHSH inequality under local realism is reviewed, and some arguments from the literature are recapitulated. Then I take up certain background themes before I enter a discussion of Alice’s analysis of the situation. An important point is that her mind is limited by the fact that her Hilbert space in this context is two-dimensional. General statements about a mind’s limitation during (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Quantum Theory and the Limits of Objectivity.Richard Healey - 2018 - Foundations of Physics 48 (11):1568-1589.
    Three recent arguments seek to show that the universal applicability of unitary quantum theory is inconsistent with the assumption that a well-conducted measurement always has a definite physical outcome. In this paper I restate and analyze these arguments. The import of the first two is diminished by their dependence on assumptions about the outcomes of counterfactual measurements. But the third argument establishes its intended conclusion. Even if every well-conducted quantum measurement we ever make will have a definite physical outcome, this (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Quantum Theory: A Pragmatist Approach.Richard Healey - 2012 - British Journal for the Philosophy of Science 63 (4):729-771.
    While its applications have made quantum theory arguably the most successful theory in physics, its interpretation continues to be the subject of lively debate within the community of physicists and philosophers concerned with conceptual foundations. This situation poses a problem for a pragmatist for whom meaning derives from use. While disputes about how to use quantum theory have arisen from time to time, they have typically been quickly resolved, and consensus reached, within the relevant scientific sub-community. Yet rival accounts of (...)
    Download  
     
    Export citation  
     
    Bookmark   75 citations  
  • The Ontology of Quantum Field Theory: Structural Realism Vindicated?David Glick - 2016 - Studies in History and Philosophy of Science Part A 59:78-86.
    In this paper I elicit a prediction from structural realism and compare it, not to a historical case, but to a contemporary scientific theory. If structural realism is correct, then we should expect physics to develop theories that fail to provide an ontology of the sort sought by traditional realists. If structure alone is responsible for instrumental success, we should expect surplus ontology to be eliminated. Quantum field theory (QFT) provides the framework for some of the best confirmed theories in (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Weak Value, Quasiprobability and Bohmian Mechanics.Kazuki Fukuda, Jaeha Lee & Izumi Tsutsui - 2017 - Foundations of Physics 47 (2):236-255.
    We clarify the significance of quasiprobability in quantum mechanics that is relevant in describing physical quantities associated with a transition process. Our basic quantity is Aharonov’s weak value, from which the QP can be defined up to a certain ambiguity parameterized by a complex number. Unlike the conventional probability, the QP allows us to treat two noncommuting observables consistently, and this is utilized to embed the QP in Bohmian mechanics such that its equivalence to quantum mechanics becomes more transparent. We (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Pristinism under Pressure: Ruetsche on the Interpretation of Quantum Theories: Laura Ruetsche, Interpreting Quantum Theories, Oxford University Press, Oxford, 2011, xvii+379 pp. [REVIEW]Simon Friederich - 2013 - Erkenntnis 78 (5):1205-1212.
    Review of Laura Ruetsche's book "Interpreting Quantum Theories".
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the Ollivier–Poulin–Zurek Definition of Objectivity.Chris Fields - 2014 - Axiomathes 24 (1):137-156.
    The Ollivier–Poulin–Zurek definition of objectivity provides a philosophical basis for the environment as witness formulation of decoherence theory and hence for quantum Darwinism. It is shown that no account of the reference of the key terms in this definition can be given that does not render the definition inapplicable within quantum theory. It is argued that this is not the fault of the language used, but of the assumption that the laws of physics are independent of Hilbert-space decomposition. All evidence (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Decompositional Equivalence: A Fundamental Symmetry Underlying Quantum Theory.Chris Fields - 2016 - Axiomathes 26 (3):279-311.
    Decompositional equivalence is the principle that there is no preferred decomposition of the universe into subsystems. It is shown here, by using a simple thought experiment, that quantum theory follows from decompositional equivalence together with Landauer’s principle. This demonstration raises within physics a question previously left to psychology: how do human—or any—observers identify or agree about what constitutes a “system of interest”?
    Download  
     
    Export citation  
     
    Bookmark  
  • A Physics-Based Metaphysics is a Metaphysics-Based Metaphysics.Chris Fields - 2014 - Acta Analytica 29 (2):131-148.
    The common practice of advancing arguments based on current physics in support of metaphysical conclusions has been criticized on the grounds that current physics may well be wrong. A further criticism is leveled here: current physics itself depends on metaphysical assumptions, so arguing from current physics is in fact arguing from yet more metaphysics. It is shown that the metaphysical assumptions underlying current physics are often deeply embedded in the formalism in which theories are presented, and hence impossible to dismiss (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Is Einstein’s Interpretation of Quantum Mechanics Ψ-Epistemic?Vincenzo Fano, Giovanni Macchia & Gino Tarozzi - 2019 - Axiomathes 29 (6):607-619.
    Harrigan and Spekkens, introduced the influential notion of an ontological model of operational quantum theory. Ontological models can be either “epistemic” or “ontic.” According to the two scholars, Einstein would have been one of the first to propose an epistemic interpretation of quantum mechanics. Pusey et al. showed that an epistemic interpretation of quantum theory is impossible, so implying that Einstein had been refuted. We discuss in detail Einstein’s arguments against the standard interpretation of QM, proving that there is a (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • How to account for quantum non-locality: ontic structural realism and the primitive ontology of quantum physics.Michael Esfeld - 2017 - Synthese 194 (7):2329-2344.
    The paper has two aims: (1) it sets out to show that it is well motivated to seek for an account of quantum non-locality in the framework of ontic structural realism (OSR), which integrates the notions of holism and non-separability that have been employed since the 1980s to achieve such an account. However, recent research shows that OSR on its own cannot provide such an account. Against this background, the paper argues that by applying OSR to the primitive ontology theories (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Quantum Bayesianism Assessed.John Earman - unknown - The Monist 102 (4):403-423.
    The idea that the quantum probabilities are best construed as the personal/subjective degrees of belief of Bayesian agents is an old one. In recent years the idea has been vigorously pursued by a group of physicists who fly the banner of quantum Bayesianism. The present paper aims to identify the prospects and problems of implementing QBism, and it critically assesses the claim that QBism provides a resolution of some of the long-standing foundations issues in quantum mechanics, including the measurement problem (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Science Generates Limit Paradoxes.Eric Dietrich & Chris Fields - 2015 - Axiomathes 25 (4):409-432.
    The sciences occasionally generate discoveries that undermine their own assumptions. Two such discoveries are characterized here: the discovery of apophenia by cognitive psychology and the discovery that physical systems cannot be locally bounded within quantum theory. It is shown that such discoveries have a common structure and that this common structure is an instance of Priest’s well-known Inclosure Schema. This demonstrates that science itself is dialetheic: it generates limit paradoxes. How science proceeds despite this fact is briefly discussed, as is (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The first-personal argument against physicalism.Christian List - manuscript
    The aim of this paper is to discuss a seemingly straightforward argument against physicalism which, despite being implicit in much of the philosophical debate about consciousness, has not received the attention it deserves (compared to other, better-known “epistemic”, “modal”, and “conceivability” arguments). This is the argument from the non-supervenience of the first-personal (and indexical) facts on the third-personal (and non-indexical) ones. This non-supervenience, together with the assumption that the physical facts (as conventionally understood) are third-personal, entails that some facts – (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A quadrilemma for theories of consciousness.Christian List - manuscript
    In this discussion paper, I argue that no theory of consciousness can simultaneously respect four initially plausible metaphysical claims – namely, “first-person realism”, “non-solipsism”, “non-fragmentation”, and “one world” – but that any three of the four claims are mutually consistent. So, theories of consciousness face a “quadrilemma”. Since it will be hard to achieve a consensus on which of the four claims to retain and which to give up, we arrive at a landscape of competing theories, all of which have (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Bayesian conditioning, the reflection principle, and quantum decoherence.Christopher A. Fuchs & Rüdiger Schack - 2012 - In Yemima Ben-Menahem & Meir Hemmo (eds.), Probability in Physics. Springer. pp. 233--247.
    The probabilities a Bayesian agent assigns to a set of events typically change with time, for instance when the agent updates them in the light of new data. In this paper we address the question of how an agent's probabilities at different times are constrained by Dutch-book coherence. We review and attempt to clarify the argument that, although an agent is not forced by coherence to use the usual Bayesian conditioning rule to update his probabilities, coherence does require the agent's (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Artistic Mediation in Mathematized Phenomenology.Robert Prentner & Shanna Dobson - manuscript
    Mathematics has a long track record of refining the concepts by which we make sense of the world. For example, mathematics allows one to speak about different senses of "sameness", depending on the larger context. Phenomenology is the name of a philosophical discipline that tries to systematically investigate the first-personal perspective on reality and how it is constituted. Together, mathematics and phenomenology seem to be a good fit to derive statements about our experience that are, at the same time, well-defined, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Philosophy of Quantum Probability - An empiricist study of its formalism and logic.Ronnie Hermens - unknown
    The use of probability theory is widespread in our daily life as well as in scientific theories. In virtually all cases, calculations can be carried out within the framework of classical probability theory. A special exception is given by quantum mechanics, which gives rise to a new probability theory: quantum probability theory. This dissertation deals with the question of how this formalism can be understood from a philosophical and physical perspective. The dissertation is divided into three parts. In the first (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Case for Quantum State Realism.Morgan C. Tait - 2012 - Dissertation, The University of Western Ontario
    I argue for a realist interpretation of the quantum state. I begin by reviewing and critically evaluating two arguments for an antirealist interpretation of the quantum state, the first derived from the so-called ‘measurement problem’, and the second from the concept of local causality. I argue that existing antirealist interpretations do not solve the measurement problem. Furthermore, I argue that it is possible to construct a local, realist interpretation of quantum mechanics, using methods borrowed from quantum field theory and based (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Critic Looks at QBism.Guido Bacciagaluppi - unknown
    This paper comments on a paper by Chris Fuchs. Both papers are to appear in "New Directions in the Philosophy of Science", eds. M. C. Galavotti, S. Hartmann, M. Weber, W. Gonzalez, D. Dieks and T. Uebel. This paper presents some mild criticisms of Fuchs's views, some based on the EPR and Wigner's friend scenarios, and some based on the quantum theory of measurement. A few alternative suggestions for implementing a subjectivist interpretation of probability in quantum mechanics conclude the paper.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Measurement and Classical Regime in Quantum Mechanics.Guido Bacciagaluppi - unknown
    This article focuses on two of the main problems raising interpretational issues in quantum mechanics, namely the notorious measurement problem and the equally important but not quite as widely discussed problem of the classical regime. The two problems are distinct, but they are both intimately related to some of the issues arising from entanglement and density operators. The article aims to be fairly non-technical in language, but modern in outlook and covering the chosen topics in more depth than most introductory (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations