Switch to: Citations

Add references

You must login to add references.
  1. Categorization and representation of physics problems by experts and novices.Michelene T. H. Chi, Paul J. Feltovich & Robert Glaser - 1981 - Cognitive Science 5 (2):121-52.
    The representation of physics problems in relation to the organization of physics knowledge is investigated in experts and novices. Four experiments examine the existence of problem categories as a basis for representation; differences in the categories used by experts and novices; differences in the knowledge associated with the categories; and features in the problems that contribute to problem categorization and representation. Results from sorting tasks and protocols reveal that experts and novices begin their problem representations with specifiably different problem categories, (...)
    Download  
     
    Export citation  
     
    Bookmark   231 citations  
  • How the laws of physics lie.Nancy Cartwright - 1983 - New York: Oxford University Press.
    In this sequence of philosophical essays about natural science, the author argues that fundamental explanatory laws, the deepest and most admired successes of modern physics, do not in fact describe regularities that exist in nature. Cartwright draws from many real-life examples to propound a novel distinction: that theoretical entities, and the complex and localized laws that describe them, can be interpreted realistically, but the simple unifying laws of basic theory cannot.
    Download  
     
    Export citation  
     
    Bookmark   1199 citations  
  • When scientific models represent.Daniela M. Bailer-Jones - 2003 - International Studies in the Philosophy of Science 17 (1):59 – 74.
    Scientific models represent aspects of the empirical world. I explore to what extent this representational relationship, given the specific properties of models, can be analysed in terms of propositions to which truth or falsity can be attributed. For example, models frequently entail false propositions despite the fact that they are intended to say something "truthful" about phenomena. I argue that the representational relationship is constituted by model users "agreeing" on the function of a model, on the fit with data and (...)
    Download  
     
    Export citation  
     
    Bookmark   78 citations  
  • Models and Analogies in Science.Mary B. Hesse - 1963 - [Notre Dame, Ind.]: University of Notre Dame Press.
    Download  
     
    Export citation  
     
    Bookmark   375 citations  
  • Galilean Idealization.Ernan McMullin - 1985 - Studies in History and Philosophy of Science Part A 16 (3):247.
    Download  
     
    Export citation  
     
    Bookmark   313 citations  
  • Thinking about mechanisms.Peter Machamer, Lindley Darden & Carl F. Craver - 2000 - Philosophy of Science 67 (1):1-25.
    The concept of mechanism is analyzed in terms of entities and activities, organized such that they are productive of regular changes. Examples show how mechanisms work in neurobiology and molecular biology. Thinking in terms of mechanisms provides a new framework for addressing many traditional philosophical issues: causality, laws, explanation, reduction, and scientific change.
    Download  
     
    Export citation  
     
    Bookmark   1335 citations  
  • The many sciences and the one world.Geoffrey Joseph - 1980 - Journal of Philosophy 77 (12):773-791.
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • VI—Metaphor, Model and Mechanism.R. Harr? - 1960 - Proceedings of the Aristotelian Society 60 (1):101-122.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • How do Scientists Think? Capturing the Dynamics of Conceptual Change in Science.Nancy Nersessian - 1992 - In R. Giere & H. Feigl (eds.), Cognitive Models of Science. University of Minnesota Press. pp. 3--45.
    Download  
     
    Export citation  
     
    Bookmark   132 citations