Switch to: Citations

Add references

You must login to add references.
  1. Locally definable homotopy.Elías Baro & Margarita Otero - 2010 - Annals of Pure and Applied Logic 161 (4):488-503.
    In [E. Baro, M. Otero, On o-minimal homotopy, Quart. J. Math. 15pp, in press ] o-minimal homotopy was developed for the definable category, proving o-minimal versions of the Hurewicz theorems and the Whitehead theorem. Here, we extend these results to the category of locally definable spaces, for which we introduce homology and homotopy functors. We also study the concept of connectedness in -definable groups — which are examples of locally definable spaces. We show that the various concepts of connectedness associated (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Locally definable homotopy.Elías Baro & Marg\ Otero - 2010 - Annals of Pure and Applied Logic 161 (4):488-503.
    In [E. Baro, M. Otero, On o-minimal homotopy, Quart. J. Math. 15pp, in press ] o-minimal homotopy was developed for the definable category, proving o-minimal versions of the Hurewicz theorems and the Whitehead theorem. Here, we extend these results to the category of locally definable spaces, for which we introduce homology and homotopy functors. We also study the concept of connectedness in -definable groups — which are examples of locally definable spaces. We show that the various concepts of connectedness associated (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Lattices in Locally Definable Subgroups of $langleR^{n},+rangle$.Pantelis E. Eleftheriou & Ya’Acov Peterzil - 2013 - Notre Dame Journal of Formal Logic 54 (3-4):449-461.
    Let $\mathcal{M}$ be an o-minimal expansion of a real closed field $R$. We define the notion of a lattice in a locally definable group and then prove that every connected, definably generated subgroup of $\langle R^{n},+\rangle$ contains a definable generic set and therefore admits a lattice.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Definable homomorphisms of abelian groups in o-minimal structures.Ya'acov Peterzil & Sergei Starchenko - 1999 - Annals of Pure and Applied Logic 101 (1):1-27.
    We investigate the group of definable homomorphisms between two definable abelian groups A and B, in an o-minimal structure . We prove the existence of a “large”, definable subgroup of . If contains an infinite definable set of homomorphisms then some definable subgroup of B admits a definable multiplication, making it into a field. As we show, all of this can be carried out not only in the underlying structure but also in any structure definable in.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • The universal covering homomorphism in o‐minimal expansions of groups.Mário J. Edmundo & Pantelis E. Eleftheriou - 2007 - Mathematical Logic Quarterly 53 (6):571-582.
    Suppose G is a definably connected, definable group in an o-minimal expansion of an ordered group. We show that the o-minimal universal covering homomorphism equation image: equation image→ G is a locally definable covering homomorphism and π1 is isomorphic to the o-minimal fundamental group π of G defined using locally definable covering homomorphisms.
    Download  
     
    Export citation  
     
    Bookmark   6 citations