Switch to: Citations

Add references

You must login to add references.
  1. Categories for the Working Mathematician.Saunders Maclane - 1971 - Springer.
    Category Theory has developed rapidly. This book aims to present those ideas and methods which can now be effectively used by Mathe­ maticians working in a variety of other fields of Mathematical research. This occurs at several levels. On the first level, categories provide a convenient conceptual language, based on the notions of category, functor, natural transformation, contravariance, and functor category. These notions are presented, with appropriate examples, in Chapters I and II. Next comes the fundamental idea of an adjoint (...)
    Download  
     
    Export citation  
     
    Bookmark   173 citations  
  • Quantum Quandaries: A Category-Theoretic Perspective.J. C. Baez - 2006 - In Dean Rickles, Steven French & Juha T. Saatsi (eds.), The Structural Foundations of Quantum Gravity. Oxford, GB: Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Ensemble Steering, Weak Self-Duality, and the Structure of Probabilistic Theories.Howard Barnum, Carl Philipp Gaebler & Alexander Wilce - 2013 - Foundations of Physics 43 (12):1411-1427.
    In any probabilistic theory, we say that a bipartite state ω on a composite system AB steers its marginal state ω B if, for any decomposition of ω B as a mixture ω B =∑ i p i β i of states β i on B, there exists an observable {a i } on A such that the conditional states $\omega_{B|a_{i}}$ are exactly the states β i . This is always so for pure bipartite states in quantum mechanics, a fact (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Four and a Half Axioms for Finite-Dimensional Quantum Probability.Alexander Wilce - 2012 - In Yemima Ben-Menahem & Meir Hemmo (eds.), Probability in Physics. Springer. pp. 281--298.
    It is an old idea, lately out of fashion but now experiencing a revival, that quantum mechanics may best be understood, not as a physical theory with a problematic probabilistic interpretation, but as something closer to a probability calculus per se. However, from this angle, the rather special C *-algebraic apparatus of quantum probability theory stands in need of further motivation. One would like to find additional principles, having clear physical and/or probabilistic content, on the basis of which this apparatus (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations