Switch to: References

Add citations

You must login to add citations.
  1. Four Ways from Universal to Particular: How Chomsky's Language-Acquisition Faculty is Not Selectionist.David Ellerman - 2016 - Journal of Applied Non-Classical Logics 3 (26):193-207.
    Following the development of the selectionist theory of the immune system, there was an attempt to characterize many biological mechanisms as being "selectionist" as juxtaposed to "instructionist." But this broad definition would group Darwinian evolution, the immune system, embryonic development, and Chomsky's language-acquisition mechanism as all being "selectionist." Yet Chomsky's mechanism (and embryonic development) are significantly different from the selectionist mechanisms of biological evolution or the immune system. Surprisingly, there is a very abstract way using two dual mathematical logics to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On classical finite probability theory as a quantum probability calculus.David Ellerman - manuscript
    This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or "toy" model of quantum mechanics over sets (QM/sets). There are two parts. The notion of an "event" is reinterpreted from being an epistemological state of indefiniteness to being an objective state of indefiniteness. And the mathematical framework of finite probability theory is recast as the quantum probability calculus for QM/sets. The point is not to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On Concrete Universals: A Modern Treatment using Category Theory.David Ellerman - 2014 - AL-Mukhatabat.
    Today it would be considered "bad Platonic metaphysics" to think that among all the concrete instances of a property there could be a universal instance so that all instances had the property by virtue of participating in that concrete universal. Yet there is a mathematical theory, category theory, dating from the mid-20th century that shows how to precisely model concrete universals within the "Platonic Heaven" of mathematics. This paper, written for the philosophical logician, develops this category-theoretic treatment of concrete universals (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An Introduction to Partition Logic.David Ellerman - 2014 - Logic Journal of the IGPL 22 (1):94-125.
    Classical logic is usually interpreted as the logic of propositions. But from Boole's original development up to modern categorical logic, there has always been the alternative interpretation of classical logic as the logic of subsets of any given (nonempty) universe set. Partitions on a universe set are dual to subsets of a universe set in the sense of the reverse-the-arrows category-theoretic duality--which is reflected in the duality between quotient objects and subobjects throughout algebra. Hence the idea arises of a dual (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • The sheet of indication: a diagrammatic semantics for Peirce’s EG-alpha.Gianluca Caterina & Rocco Gangle - 2015 - Synthese 192 (4):923-940.
    Following the guiding thread of Peirce’s use of diagrammatic syntax in his system of existential graphs , which depends crucially on the role of the Sheet of Assertion, we introduce the notion of Sheet of Indication as the basis for a general diagrammatic semantics applicable to a wide range of diagrams. We then show how Peirce’s EG-alpha graphs may be understood as instances of SIs and how logically coherent models of the graphs are represented in the SI semantics.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Agent-based modeling: the right mathematics for the social sciences?Paul Borrill & Leigh Tesfatsion - 2011 - In J. B. Davis & D. W. Hands (eds.), Elgar Companion to Recent Economic Methodology. Edward Elgar Publishers. pp. 228.
    This study provides a basic introduction to agent-based modeling (ABM) as a powerful blend of classical and constructive mathematics, with a primary focus on its applicability for social science research. The typical goals of ABM social science researchers are discussed along with the culture-dish nature of their computer experiments. The applicability of ABM for science more generally is also considered, with special attention to physics. Finally, two distinct types of ABM applications are summarized in order to illustrate concretely the duality (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Compatible operations on commutative residuated lattices.José Luis Castiglioni, Matías Menni & Marta Sagastume - 2008 - Journal of Applied Non-Classical Logics 18 (4):413-425.
    Let L be a commutative residuated lattice and let f : Lk → L a function. We give a necessary and sufficient condition for f to be compatible with respect to every congruence on L. We use this characterization of compatible functions in order to prove that the variety of commutative residuated lattices is locally affine complete. Then, we find conditions on a not necessarily polynomial function P(x, y) in L that imply that the function x ↦ min{y є L (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Sets and Functions in Theoretical Physics.Adonai S. Sant’Anna & Otávio Bueno - 2014 - Erkenntnis 79 (2):257-281.
    It is easy to show that in many natural axiomatic formulations of physical and even mathematical theories, there are many superfluous concepts usually assumed as primitive. This happens mainly when these theories are formulated in the language of standard set theories, such as Zermelo–Fraenkel’s. In 1925, John von Neumann created a set theory where sets are definable by means of functions. We provide a reformulation of von Neumann’s set theory and show that it can be used to formulate physical and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mathematical Forms and Forms of Mathematics: Leaving the Shores of Extensional Mathematics.Jean-Pierre Marquis - 2013 - Synthese 190 (12):2141-2164.
    In this paper, I introduce the idea that some important parts of contemporary pure mathematics are moving away from what I call the extensional point of view. More specifically, these fields are based on criteria of identity that are not extensional. After presenting a few cases, I concentrate on homotopy theory where the situation is particularly clear. Moreover, homotopy types are arguably fundamental entities of geometry, thus of a large portion of mathematics, and potentially to all mathematics, at least according (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • From Simple to Complex and Ultra-complex Systems: A Paradigm Shift Towards Non-Abelian Systems Dynamics.Prof Dr I. C. Baianu & Prof Dr Roberto Poli - unknown
    Atoms, molecules, organisms distinguish layers of reality because of the causal links that govern their behavior, both horizontally (atom-atom, molecule-molecule, organism-organism) and vertically (atom-molecule-organism). This is the first intuition of the theory of levels. Even if the further development of the theory will require imposing a number of qualifications to this initial intuition, the idea of a series of entities organized on different levels of complexity will prove correct. Living systems as well as social systems and the human mind present (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Structural Mereology: A Formal Elucidation and Some Metaphysical Applications.Thomas Mormann - manuscript
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Perfect MV-Algebras Are Categorically Equivalent to Abelian l-Groups.Antonio Di Nola & Ada Lettieri - 1994 - Studia Logica 53 (3):417-432.
    In this paper we prove that the category of abelian l-groups is equivalent to the category of perfect MV-algebras. Furthermore, we give a finite equational axiomatization of the variety generated by perfect MV-algebras.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Typical ambiguity: Trying to have your cake and eat it too.Solomon Feferman - manuscript
    Ambiguity is a property of syntactic expressions which is ubiquitous in all informal languages–natural, scientific and mathematical; the efficient use of language depends to an exceptional extent on this feature. Disambiguation is the process of separating out the possible meanings of ambiguous expressions. Ambiguity is typical if the process of disambiguation can be carried out in some systematic way. Russell made use of typical ambiguity in the theory of types in order to combine the assurance of its (apparent) consistency (“having (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Category theory and the foundations of mathematics: Philosophical excavations.Jean-Pierre Marquis - 1995 - Synthese 103 (3):421 - 447.
    The aim of this paper is to clarify the role of category theory in the foundations of mathematics. There is a good deal of confusion surrounding this issue. A standard philosophical strategy in the face of a situation of this kind is to draw various distinctions and in this way show that the confusion rests on divergent conceptions of what the foundations of mathematics ought to be. This is the strategy adopted in the present paper. It is divided into 5 (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Nicolas Bourbaki and the concept of mathematical structure.Leo Corry - 1992 - Synthese 92 (3):315 - 348.
    In the present article two possible meanings of the term mathematical structure are discussed: a formal and a nonformal one. It is claimed that contemporary mathematics is structural only in the nonformal sense of the term. Bourbaki's definition of structure is presented as one among several attempts to elucidate the meaning of that nonformal idea by developing a formal theory which allegedly accounts for it. It is shown that Bourbaki's concept of structure was, from a mathematical point of view, a (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • From absolute to local mathematics.J. L. Bell - 1986 - Synthese 69 (3):409 - 426.
    In this paper (a sequel to [4]) I put forward a "local" interpretation of mathematical concepts based on notions derived from category theory. The fundamental idea is to abandon the unique absolute universe of sets central to the orthodox set-theoretic account of the foundations of mathematics, replacing it by a plurality of local mathematical frameworks - elementary toposes - defined in category-theoretic terms.
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Semilattice-based dualities.A. B. Romanowska & J. D. H. Smith - 1996 - Studia Logica 56 (1-2):225 - 261.
    The paper discusses regularisation of dualities. A given duality between (concrete) categories, e.g. a variety of algebras and a category of representation spaces, is lifted to a duality between the respective categories of semilattice representations in the category of algebras and the category of spaces. In particular, this gives duality for the regularisation of an irregular variety that has a duality. If the type of the variety includes constants, then the regularisation depends critically on the location or absence of constants (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The consistency problem for set theory: An essay on the Cantorian foundations of mathematics (II).John Mayberry - 1977 - British Journal for the Philosophy of Science 28 (2):137-170.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Undefinability of propositional quantifiers in the modal system S.Silvio Ghilardi & Marek Zawadowski - 1995 - Studia Logica 55 (2):259 - 271.
    We show that (contrary to the parallel case of intuitionistic logic, see [7], [4]) there does not exist a translation fromS42 (the propositional modal systemS4 enriched with propositional quantifiers) intoS4 that preserves provability and reduces to identity for Boolean connectives and.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Adjoints and emergence: Applications of a new theory of adjoint functors. [REVIEW]David Ellerman - 2007 - Axiomathes 17 (1):19-39.
    Since its formal definition over sixty years ago, category theory has been increasingly recognized as having a foundational role in mathematics. It provides the conceptual lens to isolate and characterize the structures with importance and universality in mathematics. The notion of an adjunction (a pair of adjoint functors) has moved to center-stage as the principal lens. The central feature of an adjunction is what might be called “determination through universals” based on universal mapping properties. A recently developed “heteromorphic” theory about (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Perfect MV-algebras are categorically equivalent to abelianl-groups.Antonio Di Nola & Ada Lettieri - 1994 - Studia Logica 53 (3):417-432.
    In this paper we prove that the category of abelianl-groups is equivalent to the category of perfect MV-algebras. Furthermore, we give a finite equational axiomatization of the variety generated by perfect MV-algebras.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • A conceptual construction of complexity levels theory in spacetime categorical ontology: Non-Abelian algebraic topology, many-valued logics and dynamic systems. [REVIEW]R. Brown, J. F. Glazebrook & I. C. Baianu - 2007 - Axiomathes 17 (3-4):409-493.
    A novel conceptual framework is introduced for the Complexity Levels Theory in a Categorical Ontology of Space and Time. This conceptual and formal construction is intended for ontological studies of Emergent Biosystems, Super-complex Dynamics, Evolution and Human Consciousness. A claim is defended concerning the universal representation of an item’s essence in categorical terms. As an essential example, relational structures of living organisms are well represented by applying the important categorical concept of natural transformations to biomolecular reactions and relational structures that (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Categorical ontology of levels and emergent complexity: an introduction. [REVIEW]Ion C. Baianu - 2007 - Axiomathes 17 (3-4):209-222.
    An overview of the following three related papers in this issue presents the Emergence of Highly Complex Systems such as living organisms, man, society and the human mind from the viewpoint of the current Ontological Theory of Levels. The ontology of spacetime structures in the Universe is discussed beginning with the quantum level; then, the striking emergence of the higher levels of reality is examined from a categorical—relational and logical viewpoint. The ontological problems and methodology aspects discussed in the first (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Structure in mathematics and logic: A categorical perspective.S. Awodey - 1996 - Philosophia Mathematica 4 (3):209-237.
    A precise notion of ‘mathematical structure’ other than that given by model theory may prove fruitful in the philosophy of mathematics. It is shown how the language and methods of category theory provide such a notion, having developed out of a structural approach in modern mathematical practice. As an example, it is then shown how the categorical notion of a topos provides a characterization of ‘logical structure’, and an alternative to the Pregean approach to logic which is continuous with the (...)
    Download  
     
    Export citation  
     
    Bookmark   69 citations  
  • Functorial Semantics for the Advancement of the Science of Cognition.Posina Venkata Rayudu, Dhanjoo N. Ghista & Sisir Roy - 2017 - Mind and Matter 15 (2):161–184.
    Our manuscript addresses the foundational question of cognitive science: how do we know? Specifically, examination of the mathematics of acquiring mathematical knowledge revealed that knowing-within-mathematics is reflective of knowing-in-general. Based on the correspondence between ordinary cognition (involving physical stimuli, neural sensations, mental concepts, and conscious percepts) and mathematical knowing (involving objective particulars, measured properties, abstract theories, and concrete models), we put forward the functorial semantics of mathematical knowing as a formalization of cognition. Our investigation of the similarity between mathematics and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Grothendieck’s theory of schemes and the algebra–geometry duality.Gabriel Catren & Fernando Cukierman - 2022 - Synthese 200 (3):1-41.
    We shall address from a conceptual perspective the duality between algebra and geometry in the framework of the refoundation of algebraic geometry associated to Grothendieck’s theory of schemes. To do so, we shall revisit scheme theory from the standpoint provided by the problem of recovering a mathematical structure A from its representations \ into other similar structures B. This vantage point will allow us to analyze the relationship between the algebra-geometry duality and the structure-semiotics duality. Whereas in classical algebraic geometry (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Rigour, Proof and Soundness.Oliver M. W. Tatton-Brown - 2020 - Dissertation, University of Bristol
    The initial motivating question for this thesis is what the standard of rigour in modern mathematics amounts to: what makes a proof rigorous, or fail to be rigorous? How is this judged? A new account of rigour is put forward, aiming to go some way to answering these questions. Some benefits of the norm of rigour on this account are discussed. The account is contrasted with other remarks that have been made about mathematical proof and its workings, and is tested (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What Theoretical Equivalence Could Not Be.Trevor Teitel - 2021 - Philosophical Studies 178 (12):4119-4149.
    Formal criteria of theoretical equivalence are mathematical mappings between specific sorts of mathematical objects, notably including those objects used in mathematical physics. Proponents of formal criteria claim that results involving these criteria have implications that extend beyond pure mathematics. For instance, they claim that formal criteria bear on the project of using our best mathematical physics as a guide to what the world is like, and also have deflationary implications for various debates in the metaphysics of physics. In this paper, (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Abstract logical structuralism.Jean-Pierre Marquis - 2020 - Philosophical Problems in Science 69:67-110.
    Structuralism has recently moved center stage in philosophy of mathematics. One of the issues discussed is the underlying logic of mathematical structuralism. In this paper, I want to look at the dual question, namely the underlying structures of logic. Indeed, from a mathematical structuralist standpoint, it makes perfect sense to try to identify the abstract structures underlying logic. We claim that one answer to this question is provided by categorical logic. In fact, we claim that the latter can be seen—and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On Putnam’s Proof of the Impossibility of a Nominalistic Physics.Thomas William Barrett - 2020 - Erkenntnis 88 (1):1-28.
    In his book Philosophy of Logic, Putnam (1971) presents a short argument which reads like—and indeed, can be reconstructed as—a formal proof that a nominalistic physics is impossible. The aim of this paper is to examine Putnam’s proof and show that it is not compelling. The precise way in which the proof fails yields insight into the relation that a nominalistic physics should bear to standard physics and into Putnam’s indispensability argument.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Functorial Semantics for the Advancement of the Science of Cognition.Venkata Posina, Dhanjoo N. Ghista & Sisir Roy - 2017 - Mind and Matter 15 (2):161-184.
    Cognition involves physical stimulation, neural coding, mental conception, and conscious perception. Beyond the neural coding of physical stimuli, it is not clear how exactly these component processes constitute cognition. Within mathematical sciences, category theory provides tools such as category, functor, and adjointness, which are indispensable in the explication of the mathematical calculations involved in acquiring mathematical knowledge. More speci cally, functorial semantics, in showing that theories and models can be construed as categories and functors, respectively, and in establishing the adjointness (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Objective Logic of Consciousness.Venkata Rayudu Posina & Sisir Roy - forthcoming - In Venkata Rayudu Posina & Sisir Roy (eds.), 14th Nalanda Dialogue.
    We define consciousness as the category of all conscious experiences. This immediately raises the question: What is the essence in which every conscious experience in the category of conscious experiences partakes? We consider various abstract essences of conscious experiences as theories of consciousness. They are: (i) conscious experience is an action of memory on sensation, (ii) conscious experience is experiencing a particular as an exemplar of a general, (iii) conscious experience is an interpretation of sensation, (iv) conscious experience is referring (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The functioning of words. Procedural knowledge of drama.Mihai Nadin - unknown
    Download  
     
    Export citation  
     
    Bookmark  
  • Maddy On The Multiverse.Claudio Ternullo - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya (eds.), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag. pp. 43-78.
    Penelope Maddy has recently addressed the set-theoretic multiverse, and expressed reservations on its status and merits ([Maddy, 2017]). The purpose of the paper is to examine her concerns, by using the interpretative framework of set-theoretic naturalism. I first distinguish three main forms of 'multiversism', and then I proceed to analyse Maddy's concerns. Among other things, I take into account salient aspects of multiverse-related mathematics , in particular, research programmes in set theory for which the use of the multiverse seems to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Elaine Landry,* ed. Categories for the Working Philosopher. [REVIEW]Neil Barton - 2020 - Philosophia Mathematica 28 (1):95-108.
    LandryElaine, * ed. Categories for the Working Philosopher. Oxford University Press, 2017. ISBN 978-0-19-874899-1 ; 978-0-19-106582-8. Pp. xiv + 471.
    Download  
     
    Export citation  
     
    Bookmark  
  • Perfect Effect Algebras and Spectral Resolutions of Observables.Anatolij Dvurečenskij - 2019 - Foundations of Physics 49 (6):607-628.
    We study perfect effect algebras, that is, effect algebras with the Riesz decomposition property where every element belongs either to its radical or to its co-radical. We define perfect effect algebras with principal radical and we show that the category of such effect algebras is categorically equivalent to the category of unital po-groups with interpolation. We introduce an observable on a \-monotone \-complete perfect effect algebra with principal radical and we show that observables are in a one-to-one correspondence with spectral (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The theoretical pragmatics of non-philosophy: Explicating Laruelle's suspension of the principle of sufficient philosophy with Brandom's meaning-use diagrams.Rocco Gangle - 2014 - Angelaki 19 (2):45-57.
    Brandom's method of analyzing pragmatic relations among different practices and vocabularies through meaning-use diagrams is used to specify how Laruelle's nonphilosophical suspension of the Principle of Sufficient Philosophy may be distinguished from the philosophical auto-critiques of such thinkers as Badiou and Derrida. A superposition of diagrams modeling philosophical sufficiency on the one hand and supplementation through the Other on the other provides a schematic representation of the core duality of what Laruelle calls The-Philosophy. In contrast to this self-implicating and self-reproducing (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Sobre a Emergência e a lei de Proporcionalidade Intrínseca.Pedro Jefferson Miranda - 2018 - Dissertation, Uepg, Brazil
    Download  
     
    Export citation  
     
    Bookmark  
  • What Do Symmetries Tell Us About Structure?Thomas William Barrett - 2017 - Philosophy of Science (4):617-639.
    Mathematicians, physicists, and philosophers of physics often look to the symmetries of an object for insight into the structure and constitution of the object. My aim in this paper is to explain why this practice is successful. In order to do so, I present a collection of results that are closely related to (and in a sense, generalizations of) Beth’s and Svenonius’ theorems.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Regarding the ‘Hole Argument’.James Owen Weatherall - 2018 - British Journal for the Philosophy of Science 69 (2):329-350.
    I argue that the hole argument is based on a misleading use of the mathematical formalism of general relativity. If one is attentive to mathematical practice, I will argue, the hole argument is blocked. _1._ Introduction _2._ A Warmup Exercise _3._ The Hole Argument _4._ An Argument from Classical Spacetime Theory _5._ The Hole Argument Revisited.
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Brain functors: A mathematical model for intentional perception and action.David Ellerman - 2016 - Brain: Broad Research in Artificial Intelligence and Neuroscience 7 (1):5-17.
    Category theory has foundational importance because it provides conceptual lenses to characterize what is important and universal in mathematics—with adjunctions being the primary lens. If adjunctions are so important in mathematics, then perhaps they will isolate concepts of some importance in the empirical sciences. But the applications of adjunctions have been hampered by an overly restrictive formulation that avoids heteromorphisms or hets. By reformulating an adjunction using hets, it is split into two parts, a left and a right semiadjunction. Semiadjunctions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Some resonances between Eastern thought and Integral Biomathics in the framework of the WLIMES formalism for modelling living systems.Plamen L. Simeonov & Andree C. Ehresmann - forthcoming - Progress in Biophysics and Molecular Biology 131 (Special).
    Forty-two years ago, Capra published “The Tao of Physics” (Capra, 1975). In this book (page 17) he writes: “The exploration of the atomic and subatomic world in the twentieth century has …. necessitated a radical revision of many of our basic concepts” and that, unlike ‘classical’ physics, the sub-atomic and quantum “modern physics” shows resonances with Eastern thoughts and “leads us to a view of the world which is very similar to the views held by mystics of all ages and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Objectivity, Realism, and Proof. FilMat Studies in the Philosophy of Mathematics.Francesca Boccuni & Andrea Sereni (eds.) - 2016 - Cham, Switzerland: Springer International Publishing.
    This volume covers a wide range of topics in the most recent debates in the philosophy of mathematics, and is dedicated to how semantic, epistemological, ontological and logical issues interact in the attempt to give a satisfactory picture of mathematical knowledge. The essays collected here explore the semantic and epistemic problems raised by different kinds of mathematical objects, by their characterization in terms of axiomatic theories, and by the objectivity of both pure and applied mathematics. They investigate controversial aspects of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Proof phenomenon as a function of the phenomenology of proving.Inês Hipólito - 2015 - Progress in Biophysics and Molecular Biology 119:360-367.
    Kurt Gödel wrote (1964, p. 272), after he had read Husserl, that the notion of objectivity raises a question: “the question of the objective existence of the objects of mathematical intuition (which, incidentally, is an exact replica of the question of the objective existence of the outer world)”. This “exact replica” brings to mind the close analogy Husserl saw between our intuition of essences in Wesensschau and of physical objects in perception. What is it like to experience a mathematical proving (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The logic of partitions: Introduction to the dual of the logic of subsets: The logic of partitions.David Ellerman - 2010 - Review of Symbolic Logic 3 (2):287-350.
    Modern categorical logic as well as the Kripke and topological models of intuitionistic logic suggest that the interpretation of ordinary “propositional” logic should in general be the logic of subsets of a given universe set. Partitions on a set are dual to subsets of a set in the sense of the category-theoretic duality of epimorphisms and monomorphisms—which is reflected in the duality between quotient objects and subobjects throughout algebra. If “propositional” logic is thus seen as the logic of subsets of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A comparison between monoidal and substructural logics.Clayton Peterson - 2016 - Journal of Applied Non-Classical Logics 26 (2):126-159.
    Monoidal logics were introduced as a foundational framework to analyse the proof theory of deontic logic. Building on Lambek’s work in categorical logic, logical systems are defined as deductive systems, that is, as collections of equivalence classes of proofs satisfying specific rules and axiom schemata. This approach enables the classification of deductive systems with respect to their categorical structure. When looking at their proof theory, however, one can see that there are similarities between monoidal and substructural logics. The purpose of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)The Quantum Logic of Direct-Sum Decompositions: The Dual to the Quantum Logic of Subspaces.David Ellerman - 2017
    Since the pioneering work of Birkhoff and von Neumann, quantum logic has been interpreted as the logic of (closed) subspaces of a Hilbert space. There is a progression from the usual Boolean logic of subsets to the "quantum logic" of subspaces of a general vector space--which is then specialized to the closed subspaces of a Hilbert space. But there is a "dual" progression. The notion of a partition (or quotient set or equivalence relation) is dual (in a category-theoretic sense) to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Topologische Aspekte strukturalistischer Rekonstruktionen.Thomas Mormann - 1985 - Erkenntnis 23 (3):319-359.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Are Newtonian Gravitation and Geometrized Newtonian Gravitation Theoretically Equivalent?James Owen Weatherall - 2016 - Erkenntnis 81 (5):1073-1091.
    I argue that a criterion of theoretical equivalence due to Glymour :227–251, 1977) does not capture an important sense in which two theories may be equivalent. I then motivate and state an alternative criterion that does capture the sense of equivalence I have in mind. The principal claim of the paper is that relative to this second criterion, the answer to the question posed in the title is “yes”, at least on one natural understanding of Newtonian gravitation.
    Download  
     
    Export citation  
     
    Bookmark   76 citations  
  • Mac Lane, Bourbaki, and Adjoints: A Heteromorphic Retrospective.David Ellerman - manuscript
    Saunders Mac Lane famously remarked that "Bourbaki just missed" formulating adjoints in a 1948 appendix (written no doubt by Pierre Samuel) to an early draft of Algebre--which then had to wait until Daniel Kan's 1958 paper on adjoint functors. But Mac Lane was using the orthodox treatment of adjoints that only contemplates the object-to-object morphisms within a category, i.e., homomorphisms. When Samuel's treatment is reconsidered in view of the treatment of adjoints using heteromorphisms or hets (object-to-object morphisms between objects in (...)
    Download  
     
    Export citation  
     
    Bookmark