Switch to: Citations

Add references

You must login to add references.
  1. Causal Selection versus Causal Parity in Biology: Relevant Counterfactuals and Biologically Normal Interventions.Marcel Weber - forthcoming - In Waters C. Kenneth & Woodward James (eds.), Philosophical Perspectives on Causal Reasoning in Biology. Minnesota Studies in Philosophy of Science. Vol. XXI. University of Minnesota Press.
    Causal selection is the task of picking out, from a field of known causally relevant factors, some factors as elements of an explanation. The Causal Parity Thesis in the philosophy of biology challenges the usual ways of making such selections among different causes operating in a developing organism. The main target of this thesis is usually gene centrism, the doctrine that genes play some special role in ontogeny, which is often described in terms of information-bearing or programming. This paper is (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Varieties of parity.Ulrich E. Stegmann - 2012 - Biology and Philosophy 27 (6):903-918.
    A central idea of developmental systems theory is ‘parity’ or ‘symmetry’ between genes and non-genetic factors of development. The precise content of this idea remains controversial, with different authors stressing different aspects and little explicit comparisons among the various interpretations. Here I characterise and assess several influential versions of parity.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • On the theoretical role of "genetic coding".Peter Godfrey-Smith - 2000 - Philosophy of Science 67 (1):26-44.
    The role played by the concept of genetic coding in biology is discussed. I argue that this concept makes a real contribution to solving a specific problem in cell biology. But attempts to make the idea of genetic coding do theoretical work elsewhere in biology, and in philosophy of biology, are probably mistaken. In particular, the concept of genetic coding should not be used (as it often is) to express a distinction between the traits of whole organisms that are coded (...)
    Download  
     
    Export citation  
     
    Bookmark   82 citations  
  • What’s so special about model organisms?Rachel A. Ankeny & Sabina Leonelli - 2011 - Studies in History and Philosophy of Science Part A 42 (2):313-323.
    This paper aims to identify the key characteristics of model organisms that make them a specific type of model within the contemporary life sciences: in particular, we argue that the term “model organism” does not apply to all organisms used for the purposes of experimental research. We explore the differences between experimental and model organisms in terms of their material and epistemic features, and argue that it is essential to distinguish between their representational scope and representational target. We also examine (...)
    Download  
     
    Export citation  
     
    Bookmark   117 citations  
  • Causation in biology: Stability, specificity, and the choice of levels of explanation.James Woodward - 2010 - Biology and Philosophy 25 (3):287-318.
    This paper attempts to elucidate three characteristics of causal relationships that are important in biological contexts. Stability has to do with whether a causal relationship continues to hold under changes in background conditions. Proportionality has to do with whether changes in the state of the cause “line up” in the right way with changes in the state of the effect and with whether the cause and effect are characterized in a way that contains irrelevant detail. Specificity is connected both to (...)
    Download  
     
    Export citation  
     
    Bookmark   272 citations  
  • Philosophy of Experimental Biology.Marcel Weber - 2004 - Cambridge University Press.
    Philosophy of Experimental Biology explores some central philosophical issues concerning scientific research in experimental biology, including genetics, biochemistry, molecular biology, developmental biology, neurobiology, and microbiology. It seeks to make sense of the explanatory strategies, concepts, ways of reasoning, approaches to discovery and problem solving, tools, models and experimental systems deployed by scientific life science researchers and also integrates developments in historical scholarship, in particular the New Experimentalism. It concludes that historical explanations of scientific change that are based on local laboratory (...)
    Download  
     
    Export citation  
     
    Bookmark   165 citations  
  • Causes That Make a Difference.C. Kenneth Waters - 2007 - Journal of Philosophy 104 (11):551-579.
    Biologists studying complex causal systems typically identify some factors as causes and treat other factors as background conditions. For example, when geneticists explain biological phenomena, they often foreground genes and relegate the cellular milieu to the background. But factors in the milieu are as causally necessary as genes for the production of phenotypic traits, even traits at the molecular level such as amino acid sequences. Gene-centered biology has been criticized on the grounds that because there is parity among causes, the (...)
    Download  
     
    Export citation  
     
    Bookmark   200 citations  
  • Knowing As Making, Making As Knowing: The Many Lives of Synthetic Biology.Evelyn Fox Keller - 2009 - Biological Theory 4 (4):333-339.
    The ways in which the various activities of synthetic biology connect to those of conventional biology display both a multiplicity and variety that reflect the multiplicity and variety of meanings for which the term synthetic biology has been invoked, today as in the past. Central to this variety, as well as to the connection itself, is the complex relationship between knowing and making that has prevailed in the life sciences. That relationship is the focus of this article. More specifically, my (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Experiment in Biology (2018 update).Marcel Weber - 2018 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • How practical know‐how contextualizes theoretical knowledge: Exporting causal knowledge from laboratory to nature.C. Kenneth Waters - 2008 - Philosophy of Science 75 (5):707-719.
    Leading philosophical accounts presume that Thomas H. Morgan’s transmission theory can be understood independently of experimental practices. Experimentation is taken to be relevant to confirming, rather than interpreting, the transmission theory. But the construction of Morgan’s theory went hand in hand with the reconstruction of the chief experimental object, the model organism Drosophila melanogaster . This raises an important question: when a theory is constructed to account for phenomena in carefully controlled laboratory settings, what knowledge, if any, indicates the theory’s (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Genes made molecular.C. Kenneth Waters - 1994 - Philosophy of Science 61 (2):163-185.
    This paper investigates what molecular biology has done for our understanding of the gene. I base a new account of the gene concept of classical genetics on the classical dogma that gene differences cause phenotypic differences. Although contemporary biologists often think of genes in terms of this concept, molecular biology provides a second way to understand genes. I clarify this second way by articulating a molecular gene concept. This concept unifies our understanding of the molecular basis of a wide variety (...)
    Download  
     
    Export citation  
     
    Bookmark   114 citations  
  • What was classical genetics?C. Kenneth Waters - 2004 - Studies in History and Philosophy of Science Part A 35 (4):783-809.
    I present an account of classical genetics to challenge theory-biased approaches in the philosophy of science. Philosophers typically assume that scientific knowledge is ultimately structured by explanatory reasoning and that research programs in well-established sciences are organized around efforts to fill out a central theory and extend its explanatory range. In the case of classical genetics, philosophers assume that the knowledge was structured by T. H. Morgan’s theory of transmission and that research throughout the later 1920s, 30s, and 40s was (...)
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • Discussion Note: Which Kind of Causal Specificity Matters Biologically?Marcel Weber - unknown
    Griffiths et al. have proposed a quantitative measure of causal specificity and used it to assess various attempts to single out genetic causes as being causally more specific than other cellular mechanisms, for example, alternative splicing. Focusing in particular on developmental processes, they have identified a number of important challenges for this project. In this discussion note, I would like to show how these challenges can be met.
    Download  
     
    Export citation  
     
    Bookmark   4 citations