Switch to: References

Add citations

You must login to add citations.
  1. Cultural Evolution and the Evolution of Cultural Information.Alejandro Gordillo-García - 2023 - Biological Theory 18 (1):30-42.
    Cultural evolution is normally framed in informational terms. However, it is not clear whether this is an adequate way to model cultural evolutionary phenomena and what, precisely, “information” is supposed to mean in this context. Would cultural evolutionary theory benefit from a well-developed theory of cultural information? The prevailing sentiment is that, in contradistinction to biology, informational language should be used nontechnically in this context for descriptive, but not explanatory, purposes. Against this view, this article makes the case for the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Towards a characterization of metaphysics of biology: metaphysics for and metaphysics in biology.Vanesa Triviño - 2022 - Synthese 200 (5):1-21.
    Since the last decades of the twentieth and the beginning of the twenty-first century, the use of metaphysics by philosophers when approaching conceptual problems in biology has increased. Some philosophers call this tendency in philosophy of biology ‘Metaphysics of Biology’. In this paper, I aim at characterizing Metaphysics of Biology by paying attention to the diverse ways philosophers use metaphysics when addressing conceptual problems in biology. I will claim that there are two different modes of doing Metaphysics of Biology, namely (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • What’s all the fuss about? The inheritance of acquired traits is compatible with the Central Dogma.M. Polo Camacho - 2020 - History and Philosophy of the Life Sciences 42 (3):1-15.
    The Central Dogma of molecular biology, which holds that DNA makes protein and not the other way around, is as influential as it is controversial. Some believe the Dogma has outlived its usefulness, either because it fails to fully capture the ins-and-outs of protein synthesis (Griffiths and Stotz, 2013; Stotz, 2006), because it turns on a confused notion of information (Sarkar, 2004), or because it problematically assumes the unidirectional flow of information from DNA to protein (Gottlieb, 2001). This paper evaluates (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • How Biological Technology Should Inform the Causal Selection Debate.Janella Baxter - 2019 - Philosophy, Theory, and Practice in Biology 11.
    Waters’s (2007) actual difference making and Weber’s (2013, 2017) biological normality approaches to causal selection have received many criticisms, some of which miss their target. Disagreement about whether Waters’s and Weber’s views succeed in providing criteria that uniquely singles out the gene as explanatorily significant in biology has led philosophers to overlook a prior problem. Before one can address whether Waters’s and Weber’s views successfully account for the explanatory significance of genes, one must ask whether either view satisfactorily meets the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Why Biology is Beyond Physical Sciences?Bhakti Niskama Shanta & Bhakti Vijnana Muni - 2016 - Advances in Life Sciences 6 (1):13-30.
    In the framework of materialism, the major attention is to find general organizational laws stimulated by physical sciences, ignoring the uniqueness of Life. The main goal of materialism is to reduce consciousness to natural processes, which in turn can be translated into the language of math, physics and chemistry. Following this approach, scientists have made several attempts to deny the living organism of its veracity as an immortal soul, in favor of genes, molecules, atoms and so on. However, advancement in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Genetic, epigenetic and exogenetic information.Karola Stotz & Paul Edmund Griffiths - 2016 - In Richard Joyce (ed.), The Routledge Handbook of Evolution and Philosophy. New York: Routledge.
    We describe an approach to measuring biological information where ‘information’ is understood in the sense found in Francis Crick’s foundational contributions to molecular biology. Genes contain information in this sense, but so do epigenetic factors, as many biologists have recognized. The term ‘epigenetic’ is ambiguous, and we introduce a distinction between epigenetic and exogenetic inheritance to clarify one aspect of this ambiguity. These three heredity systems play complementary roles in supplying information for development. -/- We then consider the evolutionary significance (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Recent Work in The Philosophy of Biology.Christopher J. Austin - 2017 - Analysis 77 (2):412-432.
    The biological sciences have always proven a fertile ground for philosophical analysis, one from which has grown a rich tradition stemming from Aristotle and flowering with Darwin. And although contemporary philosophy is increasingly becoming conceptually entwined with the study of the empirical sciences with the data of the latter now being regularly utilised in the establishment and defence of the frameworks of the former, a practice especially prominent in the philosophy of physics, the development of that tradition hasn’t received the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Liberal Representationalism: A Deflationist Defense.Marc Artiga - 2016 - Dialectica 70 (3):407-430.
    The idea that only complex brains can possess genuine representations is an important element in mainstream philosophical thinking. An alternative view, which I label ‘liberal representationalism’, holds that we should accept the existence of many more full-blown representations, from activity in retinal ganglion cells to the neural states produced by innate releasing mechanisms in cognitively unsophisticated organisms. A promising way of supporting liberal representationalism is to show it to be a consequence of our best naturalistic theories of representation. However, several (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Teleosemantic modeling of cognitive representations.Marc Artiga - 2016 - Biology and Philosophy 31 (4):483-505.
    Naturalistic theories of representation seek to specify the conditions that must be met for an entity to represent another entity. Although these approaches have been relatively successful in certain areas, such as communication theory or genetics, many doubt that they can be employed to naturalize complex cognitive representations. In this essay I identify some of the difficulties for developing a teleosemantic theory of cognitive representations and provide a strategy for accommodating them: to look into models of signaling in evolutionary game (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • The Ontic Account of Scientific Explanation.Carl F. Craver - 2014 - In Marie I. Kaiser, Oliver R. Scholz, Daniel Plenge & Andreas Hüttemann (eds.), Explanation in the special science: The case of biology and history. Dordrecht: Springer. pp. 27-52.
    According to one large family of views, scientific explanations explain a phenomenon (such as an event or a regularity) by subsuming it under a general representation, model, prototype, or schema (see Bechtel, W., & Abrahamsen, A. (2005). Explanation: A mechanist alternative. Studies in History and Philosophy of Biological and Biomedical Sciences, 36(2), 421–441; Churchland, P. M. (1989). A neurocomputational perspective: The nature of mind and the structure of science. Cambridge: MIT Press; Darden (2006); Hempel, C. G. (1965). Aspects of scientific (...)
    Download  
     
    Export citation  
     
    Bookmark   80 citations  
  • Toolbox murders: putting genes in their epigenetic and ecological contexts: P. Griffiths and K. Stotz: Genetics and philosophy: an introduction. [REVIEW]Thomas Pradeu - 2016 - Biology and Philosophy 31 (1):125-142.
    Griffiths and Stotz’s Genetics and Philosophy: An Introduction offers a very good overview of scientific and philosophical issues raised by present-day genetics. Examining, in particular, the questions of how a “gene” should be defined and what a gene does from a causal point of view, the authors explore the different domains of the life sciences in which genetics has come to play a decisive role, from Mendelian genetics to molecular genetics, behavioural genetics, and evolution. In this review, I highlight what (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Dispositional Genome: Primus Inter Pares.Christopher J. Austin - 2015 - Biology and Philosophy 30 (2):227-246.
    According to the proponents of Developmental Systems Theory and the Causal Parity Thesis, the privileging of the genome as “first among equals” with respect to the development of phenotypic traits is more a reflection of our own heuristic prejudice than of ontology - the underlying causal structures responsible for that specified development no more single out the genome as primary than they do other broadly “environmental” factors. Parting with the methodology of the popular responses to the Thesis, this paper offers (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Practical Value of Biological Information for Research.Beckett Sterner - 2014 - Philosophy of Science 81 (2):175-194,.
    Many philosophers are skeptical about the scientific value of the concept of biological information. However, several have recently proposed a more positive view of ascribing information as an exercise in scientific modeling. I argue for an alternative role: guiding empirical data collection for the sake of theorizing about the evolution of semantics. I clarify and expand on Bergstrom and Rosvall’s suggestion of taking a “diagnostic” approach that defines biological information operationally as a procedure for collecting empirical cases. The more recent (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Canberra Plan Neglects Ground.Ned Block - 2015 - In Terence Horgan, Marcelo Sabates & David Sosa (eds.), Qualia and Mental Causation in a Physical World: Themes From the Philosophy of Jaegwon Kim. Cambridge, United Kingdom: Cambridge University Press. pp. 105-133.
    This paper argues that the “Canberra Plan” picture of physicalistic reduction of mind--a picture shared by both its proponents and opponents, philosophers as diverse as David Armstrong, David Chalmers Frank Jackson, Jaegwon Kim, Joe Levine and David Lewis--neglects ground (Fine, 2001, 2012). To the extent that the point of view endorsed by the Canberra Plan has an account of the physical/functional ground of mind at all, it is in one version trivial and in another version implausible. In its most general (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Causal Selection versus Causal Parity in Biology: Relevant Counterfactuals and Biologically Normal Interventions.Marcel Weber - forthcoming - In Waters C. Kenneth & Woodward James (eds.), Philosophical Perspectives on Causal Reasoning in Biology. Minnesota Studies in Philosophy of Science. Vol. XXI. University of Minnesota Press.
    Causal selection is the task of picking out, from a field of known causally relevant factors, some factors as elements of an explanation. The Causal Parity Thesis in the philosophy of biology challenges the usual ways of making such selections among different causes operating in a developing organism. The main target of this thesis is usually gene centrism, the doctrine that genes play some special role in ontogeny, which is often described in terms of information-bearing or programming. This paper is (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Varieties of parity.Ulrich E. Stegmann - 2012 - Biology and Philosophy 27 (6):903-918.
    A central idea of developmental systems theory is ‘parity’ or ‘symmetry’ between genes and non-genetic factors of development. The precise content of this idea remains controversial, with different authors stressing different aspects and little explicit comparisons among the various interpretations. Here I characterise and assess several influential versions of parity.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Inherited representations are read in development.Nicholas Shea - 2013 - British Journal for the Philosophy of Science 64 (1):1-31.
    Recent theoretical work has identified a tightly-constrained sense in which genes carry representational content. Representational properties of the genome are founded in the transmission of DNA over phylogenetic time and its role in natural selection. However, genetic representation is not just relevant to questions of selection and evolution. This paper goes beyond existing treatments and argues for the heterodox view that information generated by a process of selection over phylogenetic time can be read in ontogenetic time, in the course of (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Information in Biology: A Fictionalist Account.Arnon Levy - 2010 - Noûs 45 (4):640-657.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Genes `for' phenotypes: A modern history view.Jonathan Michael Kaplan & Massimo Pigliucci - 2001 - Biology and Philosophy 16 (2):189--213.
    We attempt to improve the understanding of the notion of agene being `for a phenotypic trait or traits. Considering theimplicit functional ascription of one thing being `for another,we submit a more restrictive version of `gene for talk.Accordingly, genes are only to be thought of as being forphenotypic traits when good evidence is available that thepresence or prevalence of the gene in a population is the resultof natural selection on that particular trait, and that theassociation between that trait and the gene (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)The concept of information in biology.John Maynard Smith - 2000 - Philosophy of Science 67 (2):177-194.
    The use of informational terms is widespread in molecular and developmental biology. The usage dates back to Weismann. In both protein synthesis and in later development, genes are symbols, in that there is no necessary connection between their form (sequence) and their effects. The sequence of a gene has been determined, by past natural selection, because of the effects it produces. In biology, the use of informational terms implies intentionality, in that both the form of the signal, and the response (...)
    Download  
     
    Export citation  
     
    Bookmark   134 citations  
  • The inheritance of features.Matteo Mameli - 2005 - Biology and Philosophy 20 (2-3):365-399.
    Since the discovery of the double helical structure of DNA, the standard account of the inheritance of features has been in terms of DNA-copying and DNA-transmission. This theory is just a version of the old theory according to which the inheritance of features is explained by the transfer at conception of some developmentally privileged material from parents to offspring. This paper does the following things: (1) it explains what the inheritance of features is; (2) it explains how the DNA-centric theory (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Evolutionary psychology, meet developmental neurobiology: Against promiscuous modularity.David J. Buller & Valerie Gray Hardcastle - 2000 - Brain and Mind 1 (3):307-25.
    Evolutionary psychologists claim that the mind contains “hundreds or thousands” of “genetically specified” modules, which are evolutionary adaptations for their cognitive functions. We argue that, while the adult human mind/brain typically contains a degree of modularization, its “modules” are neither genetically specified nor evolutionary adaptations. Rather, they result from the brain’s developmental plasticity, which allows environmental task demands a large role in shaping the brain’s information-processing structures. The brain’s developmental plasticity is our fundamental psychological adaptation, and the “modules” that result (...)
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Nature and nurture in cognition.Muhammad Ali Khalidi - 2002 - British Journal for the Philosophy of Science 53 (2):251-272.
    This paper advocates a dispositional account of innate cognitive capacities, which has an illustrious history from Plato to Chomsky. The "triggering model" of innateness, first made explicit by Stich ([1975]), explicates the notion in terms of the relative informational content of the stimulus (input) and the competence (output). The advantage of this model of innateness is that it does not make a problematic reference to normal conditions and avoids relativizing innate traits to specific populations, as biological models of innateness are (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Innateness and the sciences.Matteo Mameli & Patrick Bateson - 2006 - Biology and Philosophy 21 (2):155-188.
    The concept of innateness is a part of folk wisdom but is also used by biologists and cognitive scientists. This concept has a legitimate role to play in science only if the colloquial usage relates to a coherent body of evidence. We examine many different candidates for the post of scientific successor of the folk concept of innateness. We argue that none of these candidates is entirely satisfactory. Some of the candidates are more interesting and useful than others, but the (...)
    Download  
     
    Export citation  
     
    Bookmark   67 citations  
  • The Content and Implications of Nativist Claims. A Philosophical Analysis.Riin Kõiv - 2021 - Dissertation, University of Tartu
    We often hear how scientists have discovered that a certain human trait – or a trait of another type of organism – is innate, genetic, heritable, inherited, naturally selected etc. All these claims have something in common: they all declare a trait to have significant organism internal (for instance genetic) causes that are present in the organism at its birth. I call claims like these “nativist claims”. Nativist claims are important. They shape our overall understanding of what we are, what (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Shifting Border Between Perception and Cognition.Ben Phillips - 2017 - Noûs 53 (2):316-346.
    The distinction between perception and cognition has always had a firm footing in both cognitive science and folk psychology. However, there is little agreement as to how the distinction should be drawn. In fact, a number of theorists have recently argued that, given the ubiquity of top-down influences, we should jettison the distinction altogether. I reject this approach, and defend a pluralist account of the distinction. At the heart of my account is the claim that each legitimate way of marking (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Conflations in the Causal Account of Information Undermine the Parity Thesis.Barton Moffatt - 2011 - Philosophy of Science 78 (2):284-302.
    The received view in philosophy of biology is that there is a well-understood, philosophically rigorous account of information—causal information. I argue that this view is mistaken. Causal information is fatally undermined by misinterpretations and conflations between distinct independent accounts of information. As a result, philosophical arguments based on causal information are deeply flawed. I end by briefly considering what a correct application of the relevant accounts of information would look like in the biological context.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Agents and acacias: replies to Dennett, Sterelny, and Queller.Peter Godfrey-Smith - 2011 - Biology and Philosophy 26 (4):501-515.
    The commentaries by Dennett, Sterelny, and Queller on Darwinian Populations and Natural Selection (DPNS) are so constructive that they make it possible to extend and improve the book’s framework in several ways. My replies will focus on points of disagreement, and I will pick a small number of themes and develop them in detail. The three replies below are mostly self-contained, except that all my comments about genes, discussed by all three critics, are in the reply to Queller. Agential views (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • A Scientific Metaphysical Naturalisation of Information.Bruce Long - 2018 - Dissertation, University of Sydney
    The objective of this thesis is to present a naturalised metaphysics of information, or to naturalise information, by way of deploying a scientific metaphysics according to which contingency is privileged and a-priori conceptual analysis is excluded (or at least greatly diminished) in favour of contingent and defeasible metaphysics. The ontology of information is established according to the premises and mandate of the scientific metaphysics by inference to the best explanation, and in accordance with the idea that the primacy of physics (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Biological Information as Choice and Construction.Arnaud Pocheville - 2018 - Philosophy of Science 85 (5):1012-1025.
    A causal approach to biological information is outlined. There are two aspects to this approach: information as determining a choice between alternative objects and information as determining the construction of a single object. The first aspect has been developed in earlier work to yield a quantitative measure of biological information that can be used to analyze biological networks. This article explores the prospects for a measure based on the second aspect and suggests some applications for such a measure. These two (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Epigenetics: ambiguities and implications.Karola Stotz & Paul Griffiths - 2016 - History and Philosophy of the Life Sciences 38 (4):1-20.
    Everyone has heard of ‘epigenetics’, but the term means different things to different researchers. Four important contemporary meanings are outlined in this paper. Epigenetics in its various senses has implications for development, heredity, and evolution, and also for medicine. Concerning development, it cements the vision of a reactive genome strongly coupled to its environment. Concerning heredity, both narrowly epigenetic and broader ‘exogenetic’ systems of inheritance play important roles in the construction of phenotypes. A thoroughly epigenetic model of development and evolution (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Biological information.Peter Godfrey-Smith & Kim Sterelny - 2012 - In Ed Zalta (ed.), Stanford Encyclopedia of Philosophy. Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Consumers Need Information: supplementing teleosemantics with an input condition.Nicholas Shea - 2007 - Philosophy and Phenomenological Research 75 (2):404-435.
    The success of a piece of behaviour is often explained by its being caused by a true representation (similarly, failure falsity). In some simple organisms, success is just survival and reproduction. Scientists explain why a piece of behaviour helped the organism to survive and reproduce by adverting to the behaviour’s having been caused by a true representation. That usage should, if possible, be vindicated by an adequate naturalistic theory of content. Teleosemantics cannot do so, when it is applied to simple (...)
    Download  
     
    Export citation  
     
    Bookmark   85 citations  
  • “Molecular gene”: Interpretation in the Right Context. [REVIEW]Degeng Wang - 2005 - Biology and Philosophy 20 (2-3):453-464.
    How to interpret the “molecular gene” concept is discussed in this paper. I argue that the architecture of biological systems is hierarchical and multi-layered, exhibiting striking similarities to that of modern computers. Multiple layers exist between the genotype and system level property, the phenotype. This architectural complexity gives rise to the intrinsic complexity of the genotype-phenotype relationships. The notion of a gene being for a phenotypic trait or traits lacks adequate consideration of this complexity and has limitations in explaining the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Representation in the genome and in other inheritance systems.Nicholas Shea - 2007 - Biology and Philosophy 22 (3):313-331.
    There is ongoing controversy as to whether the genome is a representing system. Although it is widely recognised that DNA carries information, both correlating with and coding for various outcomes, neither of these implies that the genome has semantic properties like correctness or satisfaction conditions, In the Scope of Logic, Methodology, and the Philosophy of Sciences, Vol. II. Kluwer, Dordrecht, pp. 387–400). Here a modified version of teleosemantics is applied to the genome to show that it does indeed have semantic (...)
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • What is a gene for?Lindell Bromham - 2016 - Biology and Philosophy 31 (1):103-123.
    The word “gene” means different things to different people, and can even be used in multiple ways by the same individual. In this review, I follow a particular thread running through Griffith and Stotz’s “Genetics and Philosophy: an introduction”, which is the way that methods of investigation influence the way we define the concept of “gene”, from nineteen century breeding experiments to twenty-first century big data bioinformatics. These different views lead to a set of gene concepts, which only partially overlap (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Fine-tuning nativism: the 'nurtured nature' and innate cognitive structures.Slobodan Perovic & Ljiljana Radenovic - 2011 - Phenomenology and the Cognitive Sciences 10 (3):399-417.
    S. Oyama’s prominent account of the Parity Thesis states that one cannot distinguish in a meaningful way between nature-based (i.e. gene-based) and nurture-based (i.e. environment-based) characteristics in development because the information necessary for the resulting characteristics is contained at both levels. Oyama as well as P. E. Griffiths and K. Stotz argue that the Parity Thesis has far-reaching implications for developmental psychology in that both nativist and interactionist developmental accounts of psychological capacities that presuppose a substantial nature/nurture dichotomy are inadequate. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Information processing, computation, and cognition.Gualtiero Piccinini & Andrea Scarantino - 2011 - Journal of Biological Physics 37 (1):1-38.
    Computation and information processing are among the most fundamental notions in cognitive science. They are also among the most imprecisely discussed. Many cognitive scientists take it for granted that cognition involves computation, information processing, or both – although others disagree vehemently. Yet different cognitive scientists use ‘computation’ and ‘information processing’ to mean different things, sometimes without realizing that they do. In addition, computation and information processing are surrounded by several myths; first and foremost, that they are the same thing. In (...)
    Download  
     
    Export citation  
     
    Bookmark   69 citations  
  • Information in biology.Peter Godfrey-Smith - 2007 - In David L. Hull & Michael Ruse (eds.), The Cambridge Companion to the Philosophy of Biology. New York: Cambridge University Press. pp. 103--119.
    The concept of information has acquired a strikingly prominent role in contemporary biology. This trend is especially marked within genetics, but it has also become important in other areas, such as evolutionary theory and developmental biology, particularly where these fields border on genetics. The most distinctive biological role for informational concepts, and the one that has generated the most discussion, is in the description of the relations between genes and the various structures and processes that genes play a role in (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • The "genetic program" program: A commentary on Maynard Smith on information in biology.Kim Sterelny - 2000 - Philosophy of Science 67 (2):195-201.
    In many texts on evolution the reader will find a characteristic depiction of inheritance and evolution, one showing the generations of an evolving population linked only by a causal flow from genotype to genotype. On this view, the genotype of each organism in this population plays a dual role as both the motor of individual development and as the sole causal channel across the generations. This picture is known to be literally false. In many species, parents exert direct causal influence (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Modulation : an alternative to instructions and forces.Martin Flament Fultot - 2017 - Synthese 194 (3):887-916.
    It is widely believed that neural elements interact by communicating messages. Neurons, or groups of neurons, are supposed to send packages of data with informational content to other neurons or to the body. Thus, behavior is traditionally taken to consist in the execution of commands or instructions sent by the nervous system. As a consequence, neural elements and their organization are conceived as literally embodying and transmitting representations that other elements must in some way read and conform to. In opposition (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Information and the function of neurons.Marc Burock - 2011
    Many of us consider it uncontroversial that information processing is a natural function of the brain. Since functions in biology are only won through empirical investigation, there should be a significant body of unambiguous evidence that supports this functional claim. Before we can interpret the evidence, however, we must ask what it means for a biological system to process information. Although a concept of information is generally accepted in the neurosciences without critique, in other biological sciences applications of information, despite (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Explanatory symmetries, preformation, and developmental systems theory.Peter Godfrey-Smith - 2000 - Philosophy of Science 67 (3):331.
    Some central ideas associated with developmental systems theory (DST) are outlined for non-specialists. These ideas concern the nature of biological development, the alleged distinction between "genetic" and "environmental" traits, the relations between organism and environment, and evolutionary processes. I also discuss some criticisms of the DST approach.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Sender-Receiver Systems within and between Organisms.Peter Godfrey-Smith - 2014 - Philosophy of Science 81 (5):866-878.
    Drawing on models of communication due to Lewis and Skyrms, I contrast sender-receiver systems as they appear within and between organisms, and as they function in the bridging of space and time. Within the organism, memory can be seen as the sending of messages over time, communication between stages as opposed to spatial parts. Psychological memory and genetic memory are compared with respect to their relations to a sender-receiver model. Some puzzles about “genetic information” can be resolved by seeing the (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Senders, receivers, and genetic information: comments on Bergstrom and Rosvall.Peter Godfrey-Smith - 2011 - Biology and Philosophy 26 (2):177-181.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The transmission sense of information.Carl T. Bergstrom & Martin Rosvall - 2011 - Biology and Philosophy 26 (2):159-176.
    Biologists rely heavily on the language of information, coding, and transmission that is commonplace in the field of information theory developed by Claude Shannon, but there is open debate about whether such language is anything more than facile metaphor. Philosophers of biology have argued that when biologists talk about information in genes and in evolution, they are not talking about the sort of information that Shannon’s theory addresses. First, philosophers have suggested that Shannon’s theory is only useful for developing a (...)
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Gene.Hans-Jörg Rheinberger - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • If the Genome isn’t a God-like Ghost in the Machine, Then What is it?M. Blute - 2005 - Biology and Philosophy 20 (2-3):401-407.
    Implicit God-like and ghost-in-the-machine metaphors underlie much current thinking about genomes. Although many criticisms of such views exist, none have succeeded in substituting a different, widely accepted view. Viewing the genome with its protein packaging as a brain gets rid of Gods and ghosts while plausibly integrating machine and information-based views. While the ‘wetware’ of brains and genomes are very different, many fundamental principles of how they function are similar. Eukaryotic cells are compound entities in which case the nuclear genome (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Color subjectivism is not supported by color reductionism.Tom Seppalainen - 2001 - Philosophica (Belgium) 68 (2):61-87.
    If all the participants in the color ontology debate are naturalists with good sciences on their side, how could color subjectivism win? The apparent reason is that subjectivism is supported by the opponent process theory that is a successful neurophysiological reduction of colors. We will argue that the real reason is the unique reductive methodology of the opponent paradigm. We will undermine subjectivism by arguing against the methodology.
    Download  
     
    Export citation  
     
    Bookmark  
  • ‘Genetic Coding’ Reconsidered : An Analysis of Actual Usage.Ulrich E. Stegmann - 2016 - British Journal for the Philosophy of Science 67 (3):707-730.
    This article reconsiders the theoretical role of the genetic code. By drawing on published and unpublished sources from the 1950s, I analyse how the code metaphor was actually employed by the scientists who first promoted its use. The analysis shows that the term ‘code’ picked out mechanism sketches, consisting of more or less detailed descriptions of ordinary molecular components, processes, and structural properties of the mechanism of protein synthesis. The sketches provided how-possibly explanations for the ordering of amino acids by (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations