Switch to: Citations

Add references

You must login to add references.
  1. Forcing with tagged trees.John R. Steel - 1978 - Annals of Mathematical Logic 15 (1):55.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Classes of Ulm type and coding rank-homogeneous trees in other structures.E. Fokina, J. F. Knight, A. Melnikov, S. M. Quinn & C. Safranski - 2011 - Journal of Symbolic Logic 76 (3):846 - 869.
    The first main result isolates some conditions which fail for the class of graphs and hold for the class of Abelian p-groups, the class of Abelian torsion groups, and the special class of "rank-homogeneous" trees. We consider these conditions as a possible definition of what it means for a class of structures to have "Ulm type". The result says that there can be no Turing computable embedding of a class not of Ulm type into one of Ulm type. We apply (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • An example concerning Scott heights.M. Makkai - 1981 - Journal of Symbolic Logic 46 (2):301-318.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • (1 other version)Computable Trees of Scott Rank [image] , and Computable Approximation.Wesley Calvert, Julia F. Knight & Jessica Millar - 2006 - Journal of Symbolic Logic 71 (1):283 - 298.
    Makkai [10] produced an arithmetical structure of Scott rank $\omega _{1}^{\mathit{CK}}$. In [9]. Makkai's example is made computable. Here we show that there are computable trees of Scott rank $\omega _{1}^{\mathit{CK}}$. We introduce a notion of "rank homogeneity". In rank homogeneous trees, orbits of tuples can be understood relatively easily. By using these trees, we avoid the need to pass to the more complicated "group trees" of [10] and [9]. Using the same kind of trees, we obtain one of rank (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Computable structures of rank.J. F. Knight & J. Millar - 2010 - Journal of Mathematical Logic 10 (1):31-43.
    For countable structure, "Scott rank" provides a measure of internal, model-theoretic complexity. For a computable structure, the Scott rank is at most [Formula: see text]. There are familiar examples of computable structures of various computable ranks, and there is an old example of rank [Formula: see text]. In the present paper, we show that there is a computable structure of Scott rank [Formula: see text]. We give two different constructions. The first starts with an arithmetical example due to Makkai, and (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Computable structures of rank omega (ck)(1).J. F. Knight & J. Millar - 2010 - Journal of Mathematical Logic 10 (1):31-43.
    For countable structure, "Scott rank" provides a measure of internal, model-theoretic complexity. For a computable structure, the Scott rank is at most [Formula: see text]. There are familiar examples of computable structures of various computable ranks, and there is an old example of rank [Formula: see text]. In the present paper, we show that there is a computable structure of Scott rank [Formula: see text]. We give two different constructions. The first starts with an arithmetical example due to Makkai, and (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Analytic determinacy and 0#. [REVIEW]Leo Harrington - 1978 - Journal of Symbolic Logic 43 (4):685 - 693.
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Computable trees of Scott rank ω 1CK, and computable approximation.Wesley Calvert, Julia F. Knight & Jessica Millar - 2006 - Journal of Symbolic Logic 71 (1):283-298.
    Makkai [10] produced an arithmetical structure of Scott rank ω1CK. In [9], Makkai’s example is made computable. Here we show that there are computable trees of Scott rank ω1CK. We introduce a notion of “rank homogeneity”. In rank homogeneous trees, orbits of tuples can be understood relatively easily. By using these trees, we avoid the need to pass to the more complicated “group trees” of [10] and [9]. Using the same kind of trees, we obtain one of rank ω1CK that (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations