Switch to: References

Add citations

You must login to add citations.
  1. Topics in invariant descriptive set theory.Howard Becker - 2001 - Annals of Pure and Applied Logic 111 (3):145-184.
    We generalize two concepts from special cases of Polish group actions to the general case. The two concepts are elementary embeddability, from model theory, and analytic sets, from the usual descriptive set theory.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Comparing Peano arithmetic, Basic Law V, and Hume’s Principle.Sean Walsh - 2012 - Annals of Pure and Applied Logic 163 (11):1679-1709.
    This paper presents new constructions of models of Hume's Principle and Basic Law V with restricted amounts of comprehension. The techniques used in these constructions are drawn from hyperarithmetic theory and the model theory of fields, and formalizing these techniques within various subsystems of second-order Peano arithmetic allows one to put upper and lower bounds on the interpretability strength of these theories and hence to compare these theories to the canonical subsystems of second-order arithmetic. The main results of this paper (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Reverse mathematics: the playground of logic.Richard A. Shore - 2010 - Bulletin of Symbolic Logic 16 (3):378-402.
    This paper is essentially the author's Gödel Lecture at the ASL Logic Colloquium '09 in Sofia extended and supplemented by material from some other papers. After a brief description of traditional reverse mathematics, a computational approach to is presented. There are then discussions of some interactions between reverse mathematics and the major branches of mathematical logic in terms of the techniques they supply as well as theorems for analysis. The emphasis here is on ones that lie outside the usual main (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Π 1 1 relations and paths through.Sergey Goncharov, Valentina Harizanov, Julia Knight & Richard Shore - 2004 - Journal of Symbolic Logic 69 (2):585-611.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Sacks forcing sometimes needs help to produce a minimal upper bound.Robert S. Lubarsky - 1989 - Journal of Symbolic Logic 54 (2):490-498.
    Download  
     
    Export citation  
     
    Bookmark  
  • The strength of Jullien's indecomposability theorem.Itay Neeman - 2008 - Journal of Mathematical Logic 8 (1):93-119.
    Jullien's indecomposability theorem states that if a scattered countable linear order is indecomposable, then it is either indecomposable to the left, or indecomposable to the right. The theorem was shown by Montalbán to be a theorem of hyperarithmetic analysis. We identify the strength of the theorem relative to standard reverse mathematics markers. We show that it lies strictly between weak [Formula: see text] choice and [Formula: see text] comprehension.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Cohen and set theory.Akihiro Kanamori - 2008 - Bulletin of Symbolic Logic 14 (3):351-378.
    We discuss the work of Paul Cohen in set theory and its influence, especially the background, discovery, development of forcing.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Π₁¹ Relations and Paths through ᵊ.Sergey S. Goncharov, Valentina S. Harizanov, Julia F. Knight & Richard A. Shore - 2004 - Journal of Symbolic Logic 69 (2):585 - 611.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • On the equimorphism types of linear orderings.Antonio Montalbán - 2007 - Bulletin of Symbolic Logic 13 (1):71-99.
    §1. Introduction. A linear ordering embedsinto another linear ordering if it is isomorphic to a subset of it. Two linear orderings are said to beequimorphicif they can be embedded in each other. This is an equivalence relation, and we call the equivalence classesequimorphism types. We analyze the structure of equimorphism types of linear orderings, which is partially ordered by the embeddability relation. Our analysis is mainly fromthe viewpoints of Computability Theory and Reverse Mathematics. But we also obtain results, as the (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The Strength of an Axiom of Finite Choice for Branches in Trees.G. O. H. Jun Le - 2023 - Journal of Symbolic Logic 88 (4):1367-1386.
    In their logical analysis of theorems about disjoint rays in graphs, Barnes, Shore, and the author (hereafter BGS) introduced a weak choice scheme in second-order arithmetic, called the $\Sigma ^1_1$ axiom of finite choice (hereafter finite choice). This is a special case of the $\Sigma ^1_1$ axiom of choice ( $\Sigma ^1_1\text {-}\mathsf {AC}_0$ ) introduced by Kreisel. BGS showed that $\Sigma ^1_1\text {-}\mathsf {AC}_0$ suffices for proving many of the aforementioned theorems in graph theory. While it is not known (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Continuous higher randomness.Laurent Bienvenu, Noam Greenberg & Benoit Monin - 2017 - Journal of Mathematical Logic 17 (1):1750004.
    We investigate the role of continuous reductions and continuous relativization in the context of higher randomness. We define a higher analogue of Turing reducibility and show that it interacts well with higher randomness, for example with respect to van Lambalgen’s theorem and the Miller–Yu/Levin theorem. We study lowness for continuous relativization of randomness, and show the equivalence of the higher analogues of the different characterizations of lowness for Martin-Löf randomness. We also characterize computing higher [Formula: see text]-trivial sets by higher (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Model theory for< i> L_< sub>∞ ω1.Sy D. Friedman - 1984 - Annals of Pure and Applied Logic 26 (2):103-122.
    Download  
     
    Export citation  
     
    Bookmark  
  • Some recent developments in higher recursion theory.Sy D. Friedman - 1983 - Journal of Symbolic Logic 48 (3):629-642.
    In recent years higher recursion theory has experienced a deep interaction with other areas of logic, particularly set theory (fine structure, forcing, and combinatorics) and infinitary model theory. In this paper we wish to illustrate this interaction by surveying the progress that has been made in two areas: the global theory of the κ-degrees and the study of closure ordinals.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Almost Theorems of Hyperarithmetic Analysis.Richard A. Shore - forthcoming - Journal of Symbolic Logic:1-33.
    Theorems of hyperarithmetic analysis (THAs) occupy an unusual neighborhood in the realms of reverse mathematics and recursion theoretic complexity. They lie above all the fixed (recursive) iterations of the Turing Jump but below ATR $_{0}$ (and so $\Pi _{1}^{1}$ -CA $_{0}$ or the hyperjump). There is a long history of proof theoretic principles which are THAs. Until Barnes, Goh, and Shore [ta] revealed an array of theorems in graph theory living in this neighborhood, there was only one mathematical denizen. In (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Theorems of hyperarithmetic analysis and almost theorems of hyperarithmetic analysis.James S. Barnes, Jun le Goh & Richard A. Shore - 2022 - Bulletin of Symbolic Logic 28 (1):133-149.
    Theorems of hyperarithmetic analysis occupy an unusual neighborhood in the realms of reverse mathematics and recursion-theoretic complexity. They lie above all the fixed iterations of the Turing jump but below ATR $_{0}$. There is a long history of proof-theoretic principles which are THAs. Until the papers reported on in this communication, there was only one mathematical example. Barnes, Goh, and Shore [1] analyze an array of ubiquity theorems in graph theory descended from Halin’s [9] work on rays in graphs. They (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Model theory for "L"[infinity]omega 1.S. D. Friedman - 1984 - Annals of Pure and Applied Logic 26 (2):103.
    Download  
     
    Export citation  
     
    Bookmark  
  • Transfinite recursion in higher reverse mathematics.Noah Schweber - 2015 - Journal of Symbolic Logic 80 (3):940-969.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Strange Structures from Computable Model Theory.Howard Becker - 2017 - Notre Dame Journal of Formal Logic 58 (1):97-105.
    Let L be a countable language, let I be an isomorphism-type of countable L-structures, and let a∈2ω. We say that I is a-strange if it contains a computable-from-a structure and its Scott rank is exactly ω1a. For all a, a-strange structures exist. Theorem : If C is a collection of ℵ1 isomorphism-types of countable structures, then for a Turing cone of a’s, no member of C is a-strange.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The topological Vaught's conjecture and minimal counterexamples.Howard Becker - 1994 - Journal of Symbolic Logic 59 (3):757-784.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Projective subsets of separable metric spaces.Arnold W. Miller - 1990 - Annals of Pure and Applied Logic 50 (1):53-69.
    In this paper we will consider two possible definitions of projective subsets of a separable metric space X. A set A subset of or equal to X is Σ11 iff there exists a complete separable metric space Y and Borel set B subset of or equal to X × Y such that A = {x ε X : there existsy ε Y ε B}. Except for the fact that X may not be completely metrizable, this is the classical definition of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Necessary use of [image] induction in a reversal.Itay Neeman - 2011 - Journal of Symbolic Logic 76 (2):561 - 574.
    Jullien's indecomposability theorem (INDEC) states that if a scattered countable linear order is indecomposable, then it is either indecomposable to the left, or indecomposable to the right. The theorem was shown by Montalbán to be a theorem of hyperarithmetic analysis, and then, in the base system RCA₀ plus ${\mathrm{\Sigma }}_{1}^{1}\text{\hspace{0.17em}}$ induction, it was shown by Neeman to have strength strictly between weak ${\mathrm{\Sigma }}_{1}^{1}$ choice and ${\mathrm{\Delta }}_{1}^{1}$ comprehension. We prove in this paper that ${\mathrm{\Sigma }}_{1}^{1}$ induction is needed for (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the Π1 1 -separation principle.Antonio Montalbán - 2008 - Mathematical Logic Quarterly 54 (6):563-578.
    We study the proof-theoretic strength of the Π11-separation axiom scheme, and we show that Π11-separation lies strictly in between the Δ11-comprehension and Σ11-choice axiom schemes over RCA0.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Fraïssé’s conjecture in [math]-comprehension.Antonio Montalbán - 2017 - Journal of Mathematical Logic 17 (2):1750006.
    We prove Fraïssé’s conjecture within the system of Π11-comprehension. Furthermore, we prove that Fraïssé’s conjecture follows from the Δ20-bqo-ness of 3 over the system of Arithmetic Transfinite Recursion, and that the Δ20-bqo-ness of 3 is a Π21-statement strictly weaker than Π11-comprehension.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Forcing and reducibilities. III. forcing in fragments of set theory.Piergiorgio Odifreddi - 1983 - Journal of Symbolic Logic 48 (4):1013-1034.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Indecomposable linear orderings and hyperarithmetic analysis.Antonio Montalbán - 2006 - Journal of Mathematical Logic 6 (1):89-120.
    A statement of hyperarithmetic analysis is a sentence of second order arithmetic S such that for every Y⊆ω, the minimum ω-model containing Y of RCA0 + S is HYP, the ω-model consisting of the sets hyperarithmetic in Y. We provide an example of a mathematical theorem which is a statement of hyperarithmetic analysis. This statement, that we call INDEC, is due to Jullien [13]. To the author's knowledge, no other already published, purely mathematical statement has been found with this property (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Uncountable master codes and the jump hierarchy.Robert S. Lubarsky - 1987 - Journal of Symbolic Logic 52 (4):952-958.
    Download  
     
    Export citation  
     
    Bookmark  
  • Steel forcing and barwise compactness.Sy D. Friedman - 1982 - Annals of Mathematical Logic 22 (1):31-46.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Model theory for L∞ω1.Sy D. Friedman - 1984 - Annals of Pure and Applied Logic 26 (2):103-122.
    Download  
     
    Export citation  
     
    Bookmark  
  • Isomorphism of Computable Structures and Vaught's Conjecture.Howard Becker - 2013 - Journal of Symbolic Logic 78 (4):1328-1344.
    Download  
     
    Export citation  
     
    Bookmark