Switch to: Citations

Add references

You must login to add references.
  1. On Superstable Expansions of Free Abelian Groups.Daniel Palacín & Rizos Sklinos - 2018 - Notre Dame Journal of Formal Logic 59 (2):157-169.
    We prove that has no proper superstable expansions of finite Lascar rank. Nevertheless, this structure equipped with a predicate defining powers of a given natural number is superstable of Lascar rank ω. Additionally, our methods yield other superstable expansions such as equipped with the set of factorial elements.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Simple Theories.Frank O. Wagner - 2002 - Bulletin of Symbolic Logic 8 (4):522-524.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Elementary Properties of Abelian Groups.W. Szmielew - 1959 - Journal of Symbolic Logic 24 (1):59-59.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Expansions which introduce no new open sets.Gareth Boxall & Philipp Hieronymi - 2012 - Journal of Symbolic Logic 77 (1):111 - 121.
    We consider the question of when an expansion of a first-order topological structure has the property that every open set definable in the expansion is definable in the original structure. This question has been investigated by Dolich, Miller and Steinhorn in the setting of ordered structures as part of their work on the property of having o-minimal open core. We answer the question in a fairly general setting and provide conditions which in practice are often easy to check. We give (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Open core and small groups in dense pairs of topological structures.Elías Baro & Amador Martin-Pizarro - 2021 - Annals of Pure and Applied Logic 172 (1):102858.
    Dense pairs of geometric topological fields have tame open core, that is, every definable open subset in the pair is already definable in the reduct. We fix a minor gap in the published version of van den Dries's seminal work on dense pairs of o-minimal groups, and show that every definable unary function in a dense pair of geometric topological fields agrees with a definable function in the reduct, off a small definable subset, that is, a definable set internal to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Fields with a dense-codense linearly independent multiplicative subgroup.Alexander Berenstein & Evgueni Vassiliev - 2020 - Archive for Mathematical Logic 59 (1-2):197-228.
    We study expansions of an algebraically closed field K or a real closed field R with a linearly independent subgroup G of the multiplicative group of the field or the unit circle group \\), satisfying a density/codensity condition. Since the set G is neither algebraically closed nor algebraically independent, the expansion can be viewed as “intermediate” between the two other types of dense/codense expansions of geometric theories: lovely pairs and H-structures. We show that in both the algebraically closed field and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On lovely pairs of geometric structures.Alexander Berenstein & Evgueni Vassiliev - 2010 - Annals of Pure and Applied Logic 161 (7):866-878.
    We study the theory of lovely pairs of geometric structures, in particular o-minimal structures. We use the pairs to isolate a class of geometric structures called weakly locally modular which generalizes the class of linear structures in the settings of SU-rank one theories and o-minimal theories. For o-minimal theories, we use the Peterzil–Starchenko trichotomy theorem to characterize for a sufficiently general point, the local geometry around it in terms of the thorn U-rank of its type inside a lovely pair.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Expansions which introduce no new open sets.Gareth Boxall & Philipp Hieromyni - 2012 - Journal of Symbolic Logic 77 (1):111-121.
    We consider the question of when an expansion of a first-order topological structure has the property that every open set definable in the expansion is definable in the original structure. This question has been investigated by Dolich, Miller and Steinhorn in the setting of ordered structures as part of their work on the property of having o-minimal open core. We answer the question in a fairly general setting and provide conditions which in practice are often easy to check. We give (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Generic trivializations of geometric theories.Alexander Berenstein & Evgueni Vassiliev - 2014 - Mathematical Logic Quarterly 60 (4-5):289-303.
    We study the theory of the structure induced by parameter free formulas on a “dense” algebraically independent subset of a model of a geometric theory T. We show that while being a trivial geometric theory, inherits most of the model theoretic complexity of T related to stability, simplicity, rosiness, the NIP and the NTP2. In particular, we show that T is strongly minimal, supersimple of SU‐rank 1, has the NIP or the NTP2 exactly when has these properties. We show that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Pseudofinite h-structures and groups definable in supersimple h-structures.Tingxiang Zou - 2019 - Journal of Symbolic Logic 84 (3):937-956.
    In this article we explore some properties of H-structures which are introduced in [2]. We describe a construction of H-structures based on one-dimensional asymptotic classes which preserves pseudofiniteness. That is, the H-structures we construct are ultraproducts of finite structures. We also prove that under the assumption that the base theory is supersimple of SU-rank one, there are no new definable groups in H-structures. This improves the corresponding result in [2].
    Download  
     
    Export citation  
     
    Bookmark   1 citation