Switch to: Citations

Add references

You must login to add references.
  1. The Modal Logic of Stone Spaces: Diamond as Derivative.Guram Bezhanishvili - 2010 - Review of Symbolic Logic 3 (1):26-40.
    We show that if we interpret modal diamond as the derived set operator of a topological space, then the modal logic of Stone spaces isK4and the modal logic of weakly scattered Stone spaces isK4G. As a corollary, we obtain thatK4is also the modal logic of compact Hausdorff spaces andK4Gis the modal logic of weakly scattered compact Hausdorff spaces.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Some Results on Modal Axiomatization and Definability for Topological Spaces.Guram Bezhanishvili, Leo Esakia & David Gabelaia - 2005 - Studia Logica 81 (3):325-355.
    We consider two topological interpretations of the modal diamond—as the closure operator (C-semantics) and as the derived set operator (d-semantics). We call the logics arising from these interpretations C-logics and d-logics, respectively. We axiomatize a number of subclasses of the class of nodec spaces with respect to both semantics, and characterize exactly which of these classes are modally definable. It is demonstrated that the d-semantics is more expressive than the C-semantics. In particular, we show that the d-logics of the six (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • The Algebra of Topology.J. C. C. Mckinsey & Alfred Tarski - 1944 - Annals of Mathematics, Second Series 45:141-191.
    Download  
     
    Export citation  
     
    Bookmark   134 citations  
  • Unifiability in extensions of K4.Çiğdem Gencer & Dick de Jongh - 2009 - Logic Journal of the IGPL 17 (2):159-172.
    We extend and generalize the work on unifiability of [8]. We give a semantic characterization for unifiability and non-unifiability in the extensions of K4. We apply this in particular to extensions of KD4, GL and K4.3 to obtain a syntactic characterization and give a concrete decision procedure for unifiability for those logics. For that purpose we use universal models.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • The d-Logic of the Rational Numbers: A Fruitful Construction.Joel Lucero-Bryan - 2011 - Studia Logica 97 (2):265-295.
    We present a geometric construction that yields completeness results for modal logics including K4, KD4, GL and GL n with respect to certain subspaces of the rational numbers. These completeness results are extended to the bimodal case with the universal modality.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Subspaces of $${\mathbb{Q}}$$ whose d-logics do not have the FMP.Guram Bezhanishvili & Joel Lucero-Bryan - 2012 - Archive for Mathematical Logic 51 (5-6):661-670.
    We show that subspaces of the space ${\mathbb{Q}}$ of rational numbers give rise to uncountably many d-logics over K4 without the finite model property.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Scattered and hereditarily irresolvable spaces in modal logic.Guram Bezhanishvili & Patrick J. Morandi - 2010 - Archive for Mathematical Logic 49 (3):343-365.
    When we interpret modal ◊ as the limit point operator of a topological space, the Gödel-Löb modal system GL defines the class Scat of scattered spaces. We give a partition of Scat into α-slices S α , where α ranges over all ordinals. This provides topological completeness and definability results for extensions of GL. In particular, we axiomatize the modal logic of each ordinal α, thus obtaining a simple proof of the Abashidze–Blass theorem. On the other hand, when we interpret (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The structure of lattices of subframe logics.Frank Wolter - 1997 - Annals of Pure and Applied Logic 86 (1):47-100.
    This paper investigates the structure of lattices of normal mono- and polymodal subframelogics, i.e., those modal logics whose frames are closed under a certain type of substructures. Nearly all basic modal logics belong to this class. The main lattice theoretic tool applied is the notion of a splitting of a complete lattice which turns out to be connected with the “geometry” and “topology” of frames, with Kripke completeness and with axiomatization problems. We investigate in detail subframe logics containing K4, those (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Tense systems with discrete moments of time, part I.Dov M. Gabbay - 1972 - Journal of Philosophical Logic 1 (1):35 - 44.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On Topological Models of GLP.Lev Beklemishev, Guram Bezhanishvili & Thomas Icard - 2010 - In Ralf Schindler (ed.), Ways of Proof Theory. De Gruyter. pp. 135-156.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Products of modal logics, part 1.D. Gabbay & V. Shehtman - 1998 - Logic Journal of the IGPL 6 (1):73-146.
    The paper studies many-dimensional modal logics corresponding to products of Kripke frames. It proves results on axiomatisability, the finite model property and decidability for product logics, by applying a rather elaborated modal logic technique: p-morphisms, the finite depth method, normal forms, filtrations. Applications to first order predicate logics are considered too. The introduction and the conclusion contain a discussion of many related results and open problems in the area.
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • An Algebraic Approach to Subframe Logics. Modal Case.Guram Bezhanishvili, Silvio Ghilardi & Mamuka Jibladze - 2011 - Notre Dame Journal of Formal Logic 52 (2):187-202.
    We prove that if a modal formula is refuted on a wK4-algebra ( B ,□), then it is refuted on a finite wK4-algebra which is isomorphic to a subalgebra of a relativization of ( B ,□). As an immediate consequence, we obtain that each subframe and cofinal subframe logic over wK4 has the finite model property. On the one hand, this provides a purely algebraic proof of the results of Fine and Zakharyaschev for K4 . On the other hand, it (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations