Switch to: Citations

Add references

You must login to add references.
  1. Modal Logic: Graph. Darst.Patrick Blackburn, Maarten de Rijke & Yde Venema - 2001 - New York: Cambridge University Press. Edited by Maarten de Rijke & Yde Venema.
    This modern, advanced textbook reviews modal logic, a field which caught the attention of computer scientists in the late 1970's.
    Download  
     
    Export citation  
     
    Bookmark   295 citations  
  • (2 other versions)Modal Logic.Marcus Kracht - 2002 - Bulletin of Symbolic Logic 8 (2):299-301.
    Download  
     
    Export citation  
     
    Bookmark   98 citations  
  • Some Results on Modal Axiomatization and Definability for Topological Spaces.Guram Bezhanishvili, Leo Esakia & David Gabelaia - 2005 - Studia Logica 81 (3):325-355.
    We consider two topological interpretations of the modal diamond—as the closure operator (C-semantics) and as the derived set operator (d-semantics). We call the logics arising from these interpretations C-logics and d-logics, respectively. We axiomatize a number of subclasses of the class of nodec spaces with respect to both semantics, and characterize exactly which of these classes are modally definable. It is demonstrated that the d-semantics is more expressive than the C-semantics. In particular, we show that the d-logics of the six (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • More on d-Logics of Subspaces of the Rational Numbers.Guram Bezhanishvili & Joel Lucero-Bryan - 2012 - Notre Dame Journal of Formal Logic 53 (3):319-345.
    We prove that each countable rooted K4 -frame is a d-morphic image of a subspace of the space $\mathbb{Q}$ of rational numbers. From this we derive that each modal logic over K4 axiomatizable by variable-free formulas is the d-logic of a subspace of $\mathbb{Q}$ . It follows that subspaces of $\mathbb{Q}$ give rise to continuum many d-logics over K4 , continuum many of which are neither finitely axiomatizable nor decidable. In addition, we exhibit several families of modal logics finitely axiomatizable (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Algebra of Topology.J. C. C. Mckinsey & Alfred Tarski - 1944 - Annals of Mathematics, Second Series 45:141-191.
    Download  
     
    Export citation  
     
    Bookmark   134 citations  
  • The d-Logic of the Rational Numbers: A Fruitful Construction.Joel Lucero-Bryan - 2011 - Studia Logica 97 (2):265-295.
    We present a geometric construction that yields completeness results for modal logics including K4, KD4, GL and GL n with respect to certain subspaces of the rational numbers. These completeness results are extended to the bimodal case with the universal modality.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Modal Logic.Patrick Blackburn, Maarten de Rijke & Yde Venema - 2001 - Studia Logica 76 (1):142-148.
    Download  
     
    Export citation  
     
    Bookmark   394 citations