Switch to: Citations

Add references

You must login to add references.
  1. Algebraizable Logics.W. J. Blok & Don Pigozzi - 2022 - Advanced Reasoning Forum.
    W. J. Blok and Don Pigozzi set out to try to answer the question of what it means for a logic to have algebraic semantics. In this seminal book they transformed the study of algebraic logic by giving a general framework for the study of logics by algebraic means. The Dutch mathematician W. J. Blok (1947-2003) received his doctorate from the University of Amsterdam in 1979 and was Professor of Mathematics at the University of Illinois, Chicago until his death in (...)
    Download  
     
    Export citation  
     
    Bookmark   138 citations  
  • Introduction to Lattices and Order.B. A. Davey & H. A. Priestley - 2002 - Cambridge University Press.
    This new edition of Introduction to Lattices and Order presents a radical reorganization and updating, though its primary aim is unchanged. The explosive development of theoretical computer science in recent years has, in particular, influenced the book's evolution: a fresh treatment of fixpoints testifies to this and Galois connections now feature prominently. An early presentation of concept analysis gives both a concrete foundation for the subsequent theory of complete lattices and a glimpse of a methodology for data analysis that is (...)
    Download  
     
    Export citation  
     
    Bookmark   102 citations  
  • Substructural Fuzzy Logics.George Metcalfe & Franco Montagna - 2007 - Journal of Symbolic Logic 72 (3):834 - 864.
    Substructural fuzzy logics are substructural logics that are complete with respect to algebras whose lattice reduct is the real unit interval [0.1]. In this paper, we introduce Uninorm logic UL as Multiplicative additive intuitionistic linear logic MAILL extended with the prelinearity axiom ((A → B) ∧ t) ∨ ((B → A) ∧ t). Axiomatic extensions of UL include known fuzzy logics such as Monoidal t-norm logic MTL and Gödel logic G, and new weakening-free logics. Algebraic semantics for these logics are (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Preservation theorems for MTL-chains.C. van Alten - 2011 - Logic Journal of the IGPL 19 (3):490-511.
    Starting from an arbitrary MTL-chain, two constructions are considered: the MacNeille completion of the underlying order with suitable extensions of the other operations, and a finite embeddability construction. The preservation of properties via these constructions is investigated, that is, if a property that holds in the initial MTL-chain also holds in the constructed MTL-chain. General syntactic descriptions are given of terms s and t for which the inequality s ≤ t is preserved.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Supersound many-valued logics and Dedekind-MacNeille completions.Matteo Bianchi & Franco Montagna - 2009 - Archive for Mathematical Logic 48 (8):719-736.
    In Hájek et al. (J Symb Logic 65(2):669–682, 2000) the authors introduce the concept of supersound logic, proving that first-order Gödel logic enjoys this property, whilst first-order Łukasiewicz and product logics do not; in Hájek and Shepherdson (Ann Pure Appl Logic 109(1–2):65–69, 2001) this result is improved showing that, among the logics given by continuous t-norms, Gödel logic is the only one that is supersound. In this paper we will generalize the previous results. Two conditions will be presented: the first (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Basic Hoops: an Algebraic Study of Continuous t-norms.P. Aglianò, I. M. A. Ferreirim & F. Montagna - 2007 - Studia Logica 87 (1):73-98.
    A continuoxis t- norm is a continuous map * from [0, 1]² into [0,1] such that is a commutative totally ordered monoid. Since the natural ordering on [0,1] is a complete lattice ordering, each continuous t-norm induces naturally a residuation → and becomes a commutative naturally ordered residuated monoid, also called a hoop. The variety of basic hoops is precisely the variety generated by all algebras, where * is a continuous t-norm. In this paper we investigate the structure of the (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Interpolation and Beth’s property in propositional many-valued logics: A semantic investigation.Franco Montagna - 2006 - Annals of Pure and Applied Logic 141 (1):148-179.
    In this paper we give a rather detailed algebraic investigation of interpolation and Beth’s property in propositional many-valued logics extending Hájek’s Basic Logic [P. Hájek, Metamathematics of Fuzzy Logic, Kluwer, 1998], and we connect such properties with amalgamation and strong amalgamation in the corresponding varieties of algebras. It turns out that, while the most interesting extensions of in the language of have deductive interpolation, very few of them have Beth’s property or Craig interpolation. Thus in the last part of the (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • On n -contractive fuzzy logics.Rostislav Horčík, Carles Noguera & Milan Petrík - 2007 - Mathematical Logic Quarterly 53 (3):268-288.
    It is well known that MTL satisfies the finite embeddability property. Thus MTL is complete w. r. t. the class of all finite MTL-chains. In order to reach a deeper understanding of the structure of this class, we consider the extensions of MTL by adding the generalized contraction since each finite MTL-chain satisfies a form of this generalized contraction. Simultaneously, we also consider extensions of MTL by the generalized excluded middle laws introduced in [9] and the axiom of weak cancellation (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Distinguished algebraic semantics for t -norm based fuzzy logics: Methods and algebraic equivalencies.Petr Cintula, Francesc Esteva, Joan Gispert, Lluís Godo, Franco Montagna & Carles Noguera - 2009 - Annals of Pure and Applied Logic 160 (1):53-81.
    This paper is a contribution to Mathematical fuzzy logic, in particular to the algebraic study of t-norm based fuzzy logics. In the general framework of propositional core and Δ-core fuzzy logics we consider three properties of completeness with respect to any semantics of linearly ordered algebras. Useful algebraic characterizations of these completeness properties are obtained and their relations are studied. Moreover, we concentrate on five kinds of distinguished semantics for these logics–namely the class of algebras defined over the real unit (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations