Switch to: Citations

Add references

You must login to add references.
  1. A Theorem on Hypersimple Sets.J. C. E. Dekker - 1956 - Journal of Symbolic Logic 21 (1):100-100.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Small Π0 1 Classes.Stephen Binns - 2005 - Archive for Mathematical Logic 45 (4):393-410.
    The property of smallness for Π0 1 classes is introduced and is investigated with respect to Medvedev and Muchnik degree. It is shown that the property of containing a small Π0 1 class depends only on the Muchnik degree of a Π0 1 class. A comparison is made with the idea of thinness for Π0 1 classesmsthm.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Small Π01 Classes.Stephen Binns - 2006 - Archive for Mathematical Logic 45 (4):393-410.
    The property of smallness for Π01 classes is introduced and is investigated with respect to Medvedev and Muchnik degree. It is shown that the property of containing a small Π01 class depends only on the Muchnik degree of a Π01 class. A comparison is made with the idea of thinness for Π01 classesmsthm.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Embeddings into the Medvedev and Muchnik lattices of Π0 1 classes.Stephen Binns & Stephen G. Simpson - 2004 - Archive for Mathematical Logic 43 (3):399-414.
    Let w and M be the countable distributive lattices of Muchnik and Medvedev degrees of non-empty Π1 0 subsets of 2ω, under Muchnik and Medvedev reducibility, respectively. We show that all countable distributive lattices are lattice-embeddable below any non-zero element of w . We show that many countable distributive lattices are lattice-embeddable below any non-zero element of M.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Mass problems and randomness.Stephen G. Simpson - 2005 - Bulletin of Symbolic Logic 11 (1):1-27.
    A mass problem is a set of Turing oracles. If P and Q are mass problems, we say that P is weakly reducible to Q if every member of Q Turing computes a member of P. We say that P is strongly reducible to Q if every member of Q Turing computes a member of P via a fixed Turing functional. The weak degrees and strong degrees are the equivalence classes of mass problems under weak and strong reducibility, respectively. We (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations