Switch to: Citations

Add references

You must login to add references.
  1. Existence and feasibility in arithmetic.Rohit Parikh - 1971 - Journal of Symbolic Logic 36 (3):494-508.
    Download  
     
    Export citation  
     
    Bookmark   90 citations  
  • Bounded arithmetic and the polynomial hierarchy.Jan Krajíček, Pavel Pudlák & Gaisi Takeuti - 1991 - Annals of Pure and Applied Logic 52 (1-2):143-153.
    T i 2 = S i +1 2 implies ∑ p i +1 ⊆ Δ p i +1 ⧸poly. S 2 and IΔ 0 ƒ are not finitely axiomatizable. The main tool is a Herbrand-type witnessing theorem for ∃∀∃ П b i -formulas provable in T i 2 where the witnessing functions are □ p i +1.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Notes on polynomially bounded arithmetic.Domenico Zambella - 1996 - Journal of Symbolic Logic 61 (3):942-966.
    We characterize the collapse of Buss' bounded arithmetic in terms of the provable collapse of the polynomial time hierarchy. We include also some general model-theoretical investigations on fragments of bounded arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Functional interpretations of feasibly constructive arithmetic.Stephen Cook & Alasdair Urquhart - 1993 - Annals of Pure and Applied Logic 63 (2):103-200.
    A notion of feasible function of finite type based on the typed lambda calculus is introduced which generalizes the familiar type 1 polynomial-time functions. An intuitionistic theory IPVω is presented for reasoning about these functions. Interpretations for IPVω are developed both in the style of Kreisel's modified realizability and Gödel's Dialectica interpretation. Applications include alternative proofs for Buss's results concerning the classical first-order system S12 and its intuitionistic counterpart IS12 as well as proofs of some of Buss's conjectures concerning IS12, (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Bounded arithmetic for NC, ALogTIME, L and NL.P. Clote & G. Takeuti - 1992 - Annals of Pure and Applied Logic 56 (1-3):73-117.
    We define theories of bounded arithmetic, whose definable functions and relations are exactly those in certain complexity classes. Based on a recursion-theoretic characterization of NC in Clote , the first-order theory TNC, whose principal axiom scheme is a form of short induction on notation for nondeterministic polynomial-time computable relations, has the property that those functions having nondeterministic polynomial-time graph Θ such that TNC x y Θ are exactly the functions in NC, computable on a parallel random-access machine in polylogarithmic parallel (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Arithmetizing Uniform NC.Bill Allen - 1991 - Annals of Pure and Applied Logic 53 (1):1-50.
    Allen, B., Arithmetizing Uniform NC, Annals of Pure and Applied Logic 53 1–50. We give a characterization of the complexity class Uniform NC as an algebra of functions on the natural numbers which is the closure of several basic functions under composition and a schema of recursion. We then define a fragment of bounded arithmetic, and, using our characterization of Uniform NC, show that this fragment is capable of proving the totality of all of the functions in Uniform NC. Lastly, (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Provably total functions of intuitionistic bounded arithmetic.Victor Harnik - 1992 - Journal of Symbolic Logic 57 (2):466-477.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Intrinsic Computational Difficulty of Functions.Alan Cobham - 1965 - In Yehoshua Bar-Hillel (ed.), Logic, methodology and philosophy of science. Amsterdam,: North-Holland Pub. Co.. pp. 24-30.
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • On parallel hierarchies and Rki.Stephen Bloch - 1997 - Annals of Pure and Applied Logic 89 (2-3):231-273.
    This paper defines natural hierarchies of function and relation classes □i,kc and Δi,kc, constructed from parallel complexity classes in a manner analogous to the polynomial-time hierarchy. It is easily shown that □i−1,kp □c,kc □i,kp and similarly for the Δ classes. The class □i,3c coincides with the single-valued functions in Buss et al.'s class , and analogously for other growth rates. Furthermore, the class □i,kc comprises exactly the functions Σi,kb-definable in Ski−1, and if Tki−1 is Σi,kb-conservative over Ski−1, then □i,kp is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation