Switch to: Citations

Add references

You must login to add references.
  1. Machine Learning and the Future of Scientific Explanation.Florian J. Boge & Michael Poznic - 2021 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 52 (1):171-176.
    The workshop “Machine Learning: Prediction Without Explanation?” brought together philosophers of science and scholars from various fields who study and employ Machine Learning (ML) techniques, in order to discuss the changing face of science in the light of ML's constantly growing use. One major focus of the workshop was on the impact of ML on the concept and value of scientific explanation. One may speculate whether ML’s increased use in science exemplifies a paradigmatic turn towards mere pattern recognition and prediction (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Understanding from Machine Learning Models.Emily Sullivan - 2022 - British Journal for the Philosophy of Science 73 (1):109-133.
    Simple idealized models seem to provide more understanding than opaque, complex, and hyper-realistic models. However, an increasing number of scientists are going in the opposite direction by utilizing opaque machine learning models to make predictions and draw inferences, suggesting that scientists are opting for models that have less potential for understanding. Are scientists trading understanding for some other epistemic or pragmatic good when they choose a machine learning model? Or are the assumptions behind why minimal models provide understanding misguided? In (...)
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  • Causality: Models, Reasoning and Inference.Judea Pearl - 2000 - Tijdschrift Voor Filosofie 64 (1):201-202.
    Download  
     
    Export citation  
     
    Bookmark   866 citations  
  • The Nature of Statistical Learning Theory.Vladimir Vapnik - 1999 - Springer: New York.
    The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. It considers learning as a general problem of function estimation based on empirical data. Omitting proofs and technical details, the author concentrates on discussing the main results of learning theory and their connections to fundamental problems in statistics. This second edition contains three new chapters devoted to further development of the learning theory and SVM techniques. Written in a readable (...)
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  • Whatever next? Predictive brains, situated agents, and the future of cognitive science.Andy Clark - 2013 - Behavioral and Brain Sciences 36 (3):181-204.
    Brains, it has recently been argued, are essentially prediction machines. They are bundles of cells that support perception and action by constantly attempting to match incoming sensory inputs with top-down expectations or predictions. This is achieved using a hierarchical generative model that aims to minimize prediction error within a bidirectional cascade of cortical processing. Such accounts offer a unifying model of perception and action, illuminate the functional role of attention, and may neatly capture the special contribution of cortical processing to (...)
    Download  
     
    Export citation  
     
    Bookmark   753 citations  
  • (1 other version)Causality: Models, Reasoning and Inference.Judea Pearl - 2000 - New York: Cambridge University Press.
    Causality offers the first comprehensive coverage of causal analysis in many sciences, including recent advances using graphical methods. Pearl presents a unified account of the probabilistic, manipulative, counterfactual and structural approaches to causation, and devises simple mathematical tools for analyzing the relationships between causal connections, statistical associations, actions and observations. The book will open the way for including causal analysis in the standard curriculum of statistics, artificial intelligence, business, epidemiology, social science and economics.
    Download  
     
    Export citation  
     
    Bookmark   703 citations  
  • Causality: Models, reasoning and inference.Christopher Hitchcock - 2001 - Philosophical Review 110 (4):639-641.
    book reveiw van boek met gelijknamige titel van Judea Pearl.
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • (What) Can Deep Learning Contribute to Theoretical Linguistics?Gabe Dupre - 2021 - Minds and Machines 31 (4):617-635.
    Deep learning techniques have revolutionised artificial systems’ performance on myriad tasks, from playing Go to medical diagnosis. Recent developments have extended such successes to natural language processing, an area once deemed beyond such systems’ reach. Despite their different goals, these successes have suggested that such systems may be pertinent to theoretical linguistics. The competence/performance distinction presents a fundamental barrier to such inferences. While DL systems are trained on linguistic performance, linguistic theories are aimed at competence. Such a barrier has traditionally (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations