Switch to: Citations

Add references

You must login to add references.
  1. The ‘Big Picture’: The Problem of Extrapolation in Basic Research.Tudor M. Baetu - 2016 - British Journal for the Philosophy of Science 67 (4):941-964.
    Both clinical research and basic science rely on the epistemic practice of extrapolation from surrogate models, to the point that explanatory accounts presented in review papers and biology textbooks are in fact composite pictures reconstituted from data gathered in a variety of distinct experimental setups. This raises two new challenges to previously proposed mechanistic-similarity solutions to the problem of extrapolation: one pertaining to the absence of mechanistic knowledge in the early stages of research and the second to the large number (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • What’s so special about model organisms?Rachel A. Ankeny & Sabina Leonelli - 2011 - Studies in History and Philosophy of Science Part A 42 (2):313-323.
    This paper aims to identify the key characteristics of model organisms that make them a specific type of model within the contemporary life sciences: in particular, we argue that the term “model organism” does not apply to all organisms used for the purposes of experimental research. We explore the differences between experimental and model organisms in terms of their material and epistemic features, and argue that it is essential to distinguish between their representational scope and representational target. We also examine (...)
    Download  
     
    Export citation  
     
    Bookmark   113 citations  
  • Experimental complexity in biology: Some epistemological and historical remarks.Hans-Jörg Rheinberger - 1997 - Philosophy of Science 64 (4):254.
    My paper draws on examples from molecular biology, the details of which I have developed elsewhere (Rheinberger 1992, 1993, 1995, 1997). Here, I can give only a brief outline of my argument. Reduction of complexity is a prerequisite for experimental research. To make sense of the universe of living beings, the modern biologist is bound to divide his world into fragments in which parameters can be defined, quantities measured, qualities identified. Such is the nature of any "experimental system." Ontic complexity (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • From humanized mice to human disease: guiding extrapolation from model to target.Monika Piotrowska - 2013 - Biology and Philosophy 28 (3):439-455.
    Extrapolation from a well-understood base population to a less-understood target population can fail if the base and target populations are not sufficiently similar. Differences between laboratory mice and humans, for example, can hinder extrapolation in medical research. Mice that carry a partial or complete human physiological system, known as humanized mice, are supposed to make extrapolation more reliable by simulating a variety of human diseases. But what justifies our belief that these mice are similar enough to their human counterparts to (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Why Most Published Research Findings Are False.John P. A. Ioannidis - 2005 - PLoS Med 2 (8):e124.
    Published research findings are sometimes refuted by subsequent evidence, says Ioannidis, with ensuing confusion and disappointment.
    Download  
     
    Export citation  
     
    Bookmark   361 citations  
  • Why do funding agencies favor hypothesis testing?Chris Haufe - 2013 - Studies in History and Philosophy of Science Part A 44 (3):363-374.
    Exploratory inquiry has difficulty attracting research funding because funding agencies have little sense of how to detect good science in exploratory contexts. After documenting and explaining the focus on hypothesis testing among a variety of institutions responsible for distinguishing between good and bad science, I analyze the NIH grant review process. I argue that a good explanation for the focus on hypothesis testing—at least at the level of science funding agencies—is the fact that hypothesis-driven research is relatively easy to appraise. (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Can animal data translate to innovations necessary for a new era of patient-centred and individualised healthcare? Bias in preclinical animal research.Susan Bridgwood Green - 2015 - BMC Medical Ethics 16 (1):1-14.
    BackgroundThe public and healthcare workers have a high expectation of animal research which they perceive as necessary to predict the safety and efficacy of drugs before testing in clinical trials. However, the expectation is not always realised and there is evidence that the research often fails to stand up to scientific scrutiny and its 'predictive value' is either weak or absent.DiscussionProblems with the use of animals as models of humans arise from a variety of biases and systemic failures including: 1) (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Arabidopsis to Zebrafish: A Commentary on "Rosetta Stone" Model Systems in the Biological Sciences.Howard Gest - 1995 - Perspectives in Biology and Medicine 39 (1):77-85.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The diversity of experimental organisms in biomedical research may be influenced by biomedical funding.B. R. Erick Peirson, Heather Kropp, Julia Damerow & Manfred D. Laubichler - 2017 - Bioessays 39 (5):1600258.
    Contrary to concerns of some critics, we present evidence that biomedical research is not dominated by a small handful of model organisms. An exhaustive analysis of research literature suggests that the diversity of experimental organisms in biomedical research has increased substantially since 1975. There has been a longstanding worry that organism‐centric funding policies can lead to biases in experimental organism choice, and thus negatively impact the direction of research and the interpretation of results. Critics have argued that a focus on (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • 1,500 scientists lift the lid on reproducibility.M. Baker - 2016 - Nature 533 (7604):452-454.
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  • Re-Engineering Philosophy for Limited Beings. Piecewise Approximations to Reality.William C. Wimsatt - 2010 - Critica 42 (124):108-117.
    Download  
     
    Export citation  
     
    Bookmark   359 citations