Switch to: Citations

Add references

You must login to add references.
  1. Creature forcing and five cardinal characteristics in Cichoń’s diagram.Arthur Fischer, Martin Goldstern, Jakob Kellner & Saharon Shelah - 2017 - Archive for Mathematical Logic 56 (7-8):1045-1103.
    We use a creature construction to show that consistently $$\begin{aligned} \mathfrak d=\aleph _1= {{\mathrm{cov}}}< {{\mathrm{non}}}< {{\mathrm{non}}}< {{\mathrm{cof}}} < 2^{\aleph _0}. \end{aligned}$$The same method shows the consistency of $$\begin{aligned} \mathfrak d=\aleph _1= {{\mathrm{cov}}}< {{\mathrm{non}}}< {{\mathrm{non}}}< {{\mathrm{cof}}} < 2^{\aleph _0}. \end{aligned}$$.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • There may be simple Pℵ1 and Pℵ2-points and the Rudin-Keisler ordering may be downward directed.Andreas Blass & Saharon Shelah - 1987 - Annals of Pure and Applied Logic 33 (C):213-243.
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Cichoń’s diagram and localisation cardinals.Martin Goldstern & Lukas Daniel Klausner - 2020 - Archive for Mathematical Logic 60 (3):343-411.
    We reimplement the creature forcing construction used by Fischer et al. :1045–1103, 2017. https://doi.org/10.1007/S00153-017-0553-8. arXiv:1402.0367 [math.LO]) to separate Cichoń’s diagram into five cardinals as a countable support product. Using the fact that it is of countable support, we augment our construction by adding uncountably many additional cardinal characteristics, sometimes referred to as localisation cardinals.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Semi-Cohen Boolean algebras.Bohuslav Balcar, Thomas Jech & Jindřich Zapletal - 1997 - Annals of Pure and Applied Logic 87 (3):187-208.
    We investigate classes of Boolean algebras related to the notion of forcing that adds Cohen reals. A Cohen algebra is a Boolean algebra that is dense in the completion of a free Boolean algebra. We introduce and study generalizations of Cohen algebras: semi-Cohen algebras, pseudo-Cohen algebras and potentially Cohen algebras. These classes of Boolean algebras are closed under completion.
    Download  
     
    Export citation  
     
    Bookmark   4 citations