Switch to: Citations

Add references

You must login to add references.
  1. Explaining Chaos.Peter Smith - 1998 - Cambridge University Press.
    Chaotic dynamics has been hailed as the third great scientific revolution in physics this century, comparable to relativity and quantum mechanics. In this book, Peter Smith takes a cool, critical look at such claims. He cuts through the hype and rhetoric by explaining some of the basic mathematical ideas in a clear and accessible way, and by carefully discussing the methodological issues which arise. In particular, he explores the new kinds of explanation of empirical phenomena which modern dynamics can deliver. (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • Taking Thermodynamics Too Seriously.Craig Callender - 2001 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 32 (4):539-553.
    This paper discusses the mistake of understanding the laws and concepts of thermodynamics too literally in the foundations of statistical mechanics. Arguing that this error is still made in subtle ways, the article explores its occurrence in three examples: the Second Law, the concept of equilibrium and the definition of phase transitions.
    Download  
     
    Export citation  
     
    Bookmark   100 citations  
  • Emergence and Reduction Combined in Phase Transitions.Jeremy Butterfield & Nazim Bouatta - unknown
    In another paper, one of us argued that emergence and reduction are compatible, and presented four examples illustrating both. The main purpose of this paper is to develop this position for the example of phase transitions. We take it that emergence involves behaviour that is novel compared with what is expected: often, what is expected from a theory of the system's microscopic constituents. We take reduction as deduction, aided by appropriate definitions. Then the main idea of our reconciliation of emergence (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Phase Transitions in Finite Systems.Paul Mainwood - unknown
    This paper examines the apparent paradox in the fact that all successful theoretical treatments of phase transitions require an infinite system, yet they are clearly seen to occur in finite systems in the real world. A simple resolution is offered, and the paper ends with a consideration of analogies that can be taken in interpretations of quantum theory.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The Logic of Thermostatistical Physics.Gerard G. Emch & Chuang Liu - 2002 - Springer Verlag.
    This book is devoted to a thorough analysis of the role that models play in the practise of physical theory. The authors, a mathematical physicist and a philosopher of science, appeal to the logicians’ notion of model theory as well as to the concepts of physicists.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • (1 other version)The Structure of Science.Ernest Nagel - 1961 - Les Etudes Philosophiques 17 (2):275-275.
    Download  
     
    Export citation  
     
    Bookmark   881 citations  
  • Theories of matter: Infinities and renormalization.Leop Kadanoff - 2013 - In Robert W. Batterman (ed.), The Oxford Handbook of Philosophy of Physics. Oxford University Press USA. pp. 141.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Quantum statistical physics.Gérard Emch - 2006 - In Jeremy Butterfield & John Earman (eds.), Philosophy of Physics. Amsterdam and Boston: Elsevier. pp. 1075--1182.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • More is different.P. W. Anderson - 1994 - In H. Gutfreund & G. Toulouse (eds.), Biology and Computation: A Physicist's Choice. World Scientific. pp. 3--21.
    Download  
     
    Export citation  
     
    Bookmark   172 citations  
  • Deterministic Laws and Epistemic Chances.Wayne C. Myrvold - 2012 - In Yemima Ben-Menahem & Meir Hemmo (eds.), Probability in Physics. Springer. pp. 73--85.
    In this paper, a concept of chance is introduced that is compatible with deterministic physical laws, yet does justice to our use of chance-talk in connection with typical games of chance. We take our cue from what Poincaré called "the method of arbitrary functions," and elaborate upon a suggestion made by Savage in connection with this. Comparison is made between this notion of chance, and David Lewis' conception.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Fractal geometry is not the geometry of nature.Orly R. Shenker - 1994 - Studies in History and Philosophy of Science Part A 25 (6):967-981.
    In recent years the magnificent world of fractals has been revealed. Some of the fractal images resemble natural forms so closely that Benoit Mandelbrot's hypothesis, that the fractal geometry is the geometry of natural objects, has been accepted by scientists and non-scientists alike. The present paper critically examines Mandelbrot's hypothesis. It first analyzes the concept of a fractal. The analysis reveals that fractals are endless geometrical processes, and not geometrical forms. A comparison between fractals and irrational numbers shows that the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Emergence, Reduction and Supervenience: A Varied Landscape. [REVIEW]Jeremy Butterfield - 2011 - Foundations of Physics 41 (6):920-959.
    This is one of two papers about emergence, reduction and supervenience. It expounds these notions and analyses the general relations between them. The companion paper analyses the situation in physics, especially limiting relations between physical theories. I shall take emergence as behaviour that is novel and robust relative to some comparison class. I shall take reduction as deduction using appropriate auxiliary definitions. And I shall take supervenience as a weakening of reduction, viz. to allow infinitely long definitions. The overall claim (...)
    Download  
     
    Export citation  
     
    Bookmark   98 citations  
  • Bigger than Chaos: Understanding Complexity through Probability.Michael Strevens - 2003 - Harvard University Press.
    In this book, Michael Strevens aims to explain how simplicity can coexist with, indeed be caused by, the tangled interconnections between a complex system's ...
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Understanding thermodynamic singularities: Phase transitions, data, and phenomena.Sorin Bangu - 2009 - Philosophy of Science 76 (4):488-505.
    According to standard (quantum) statistical mechanics, the phenomenon of a phase transition, as described in classical thermodynamics, cannot be derived unless one assumes that the system under study is infinite. This is naturally puzzling since real systems are composed of a finite number of particles; consequently, a well‐known reaction to this problem was to urge that the thermodynamic definition of phase transitions (in terms of singularities) should not be “taken seriously.” This article takes singularities seriously and analyzes their role by (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Emergence and singular limits.Andrew Wayne - 2012 - Synthese 184 (3):341-356.
    Recent work by Robert Batterman and Alexander Rueger has brought attention to cases in physics in which governing laws at the base level “break down” and singular limit relations obtain between base- and upper-level theories. As a result, they claim, these are cases with emergent upper-level properties. This paper contends that this inference—from singular limits to explanatory failure, novelty or irreducibility, and then to emergence—is mistaken. The van der Pol nonlinear oscillator is used to show that there can be a (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Emergence, Singularities, and Symmetry Breaking.Robert W. Batterman - 2011 - Foundations of Physics 41 (6):1031-1050.
    This paper looks at emergence in physical theories and argues that an appropriate way to understand socalled “emergent protectorates” is via the explanatory apparatus of the renormalization group. It is argued that mathematical singularities play a crucial role in our understanding of at least some well-defined emergent features of the world.
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • The sciences of the artificial.Herbert Alexander Simon - 1969 - [Cambridge,: M.I.T. Press.
    Continuing his exploration of the organization of complexity and the science of design, this new edition of Herbert Simon's classic work on artificial ...
    Download  
     
    Export citation  
     
    Bookmark   936 citations  
  • The Structure of Science: Problems in the Logic of Scientific Explanation.Ernest Nagel - 1961 - New York, NY, USA: Harcourt, Brace & World.
    Introduction: Science and Common Sense Long before the beginnings of modern civilization, men ac- quired vast funds of information about their environment. ...
    Download  
     
    Export citation  
     
    Bookmark   489 citations  
  • Determinism and Chance from a Humean Perspective.Roman Frigg & Carl Hoefer - 2010 - In Thomas Uebel, Stephan Hartmann, Wenceslao Gonzalez, Marcel Weber, Dennis Dieks & Friedrich Stadler (eds.), The Present Situation in the Philosophy of Science. Springer. pp. 351--72.
    On the face of it ‘deterministic chance’ is an oxymoron: either an event is chancy or deterministic, but not both. Nevertheless, the world is rife with events that seem to be exactly that: chancy and deterministic at once. Simple gambling devices like coins and dice are cases in point. On the one hand they are governed by deterministic laws – the laws of classical mechanics – and hence given the initial condition of, say, a coin toss it is determined whether (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • (1 other version)The devil in the details: asymptotic reasoning in explanation, reduction, and emergence.Robert W. Batterman - 2002 - New York: Oxford University Press.
    Robert Batterman examines a form of scientific reasoning called asymptotic reasoning, arguing that it has important consequences for our understanding of the scientific process as a whole. He maintains that asymptotic reasoning is essential for explaining what physicists call universal behavior. With clarity and rigor, he simplifies complex questions about universal behavior, demonstrating a profound understanding of the underlying structures that ground them. This book introduces a valuable new method that is certain to fill explanatory gaps across disciplines.
    Download  
     
    Export citation  
     
    Bookmark   265 citations  
  • (1 other version)Infinite systems in SM explanations: Thermodynamic limit, renormalization (semi-) groups, and irreversibility.Chuang Liu - 2001 - Proceedings of the Philosophy of Science Association 2001 (3):S325-.
    This paper examines the justifications for using infinite systems to 'recover' thermodynamic properties, such as phase transitions (PT), critical phenomena (CP), and irreversibility, from the micro-structure of matter in bulk. Section 2 is a summary of such rigorous methods as in taking the thermodynamic limit (TL) to recover PT and in using renormalization (semi-) group approach (RG) to explain the universality of critical exponents. Section 3 examines various possible justifications for taking TL on physically finite systems. Section 4 discusses the (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Evolutionary theory and the reality of macro probabilities.Elliott Sober - 2010 - In Ellery Eells & James H. Fetzer (eds.), The Place of Probability in Science: In Honor of Ellery Eells (1953-2006). Springer. pp. 133--60.
    Evolutionary theory is awash with probabilities. For example, natural selection is said to occur when there is variation in fitness, and fitness is standardly decomposed into two components, viability and fertility, each of which is understood probabilistically. With respect to viability, a fertilized egg is said to have a certain chance of surviving to reproductive age; with respect to fertility, an adult is said to have an expected number of offspring.1 There is more to evolutionary theory than the theory of (...)
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Critical phenomena and breaking drops: Infinite idealizations in physics.Robert Batterman - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36 (2):225-244.
    Thermodynamics and Statistical Mechanics are related to one another through the so-called "thermodynamic limit'' in which, roughly speaking the number of particles becomes infinite. At critical points (places of physical discontinuity) this limit fails to be regular. As a result, the "reduction'' of Thermodynamics to Statistical Mechanics fails to hold at such critical phases. This fact is key to understanding an argument due to Craig Callender to the effect that the thermodynamic limit leads to mistakes in Statistical Mechanics. I discuss (...)
    Download  
     
    Export citation  
     
    Bookmark   98 citations  
  • Asymptotics, reduction and emergence.C. A. Hooker - 2004 - British Journal for the Philosophy of Science 55 (3):435-479.
    All the major inter-theoretic relations of fundamental science are asymptotic ones, e.g. quantum theory as Planck's constant h 0, yielding (roughly) Newtonian mechanics. Thus asymptotics ultimately grounds claims about inter-theoretic explanation, reduction and emergence. This paper examines four recent, central claims by Batterman concerning asymptotics and reduction. While these claims are criticised, the discussion is used to develop an enriched, dynamically-based account of reduction and emergence, to show its capacity to illuminate the complex variety of inter-theory relationships in physics, and (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Finite forms of de finetti's theorem on exchangeability.Persi Diaconis - 1977 - Synthese 36 (2):271 - 281.
    A geometrical interpretation of independence and exchangeability leads to understanding the failure of de Finetti's theorem for a finite exchangeable sequence. In particular an exchangeable sequence of length r which can be extended to an exchangeable sequence of length k is almost a mixture of independent experiments, the error going to zero like 1/k.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The method of arbitrary functions.Jan von Plato - 1983 - British Journal for the Philosophy of Science 34 (1):37-47.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Functional reduction and emergence in the physical sciences.Alexander Rueger - 2006 - Synthese 151 (3):335 - 346.
    Kim’s model of ‘functional reduction’ of properties is shown to fail in a class of cases from physics involving properties at different spatial levels. The diagnosis of this failure leads to a non-reductive account of the relation of micro and macro properties.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Probability and ecological complexity.Mark Colyvan - 2005 - Biology and Philosophy 20 (4):869-879.
    There is something genuinely puzzling about large-scale simplicity emerging in systems that are complex at the small scale. Consider, for example, a population of hares. Clearly, the number of hares at any given time depends on hare fertility rates, the weather, the number of predators, the health of the predators, availability of hare resources, motor vehicle traffic, individual hare locations, colour of individual hares, and so on. Indeed, given the incredibly complexity of the hares’ environment at the small-scale, it is (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the explanatory role of mathematics in empirical science.Robert W. Batterman - 2010 - British Journal for the Philosophy of Science 61 (1):1-25.
    This paper examines contemporary attempts to explicate the explanatory role of mathematics in the physical sciences. Most such approaches involve developing so-called mapping accounts of the relationships between the physical world and mathematical structures. The paper argues that the use of idealizations in physical theorizing poses serious difficulties for such mapping accounts. A new approach to the applicability of mathematics is proposed.
    Download  
     
    Export citation  
     
    Bookmark   127 citations  
  • Saving the phenomena.James Bogen & James Woodward - 1988 - Philosophical Review 97 (3):303-352.
    Download  
     
    Export citation  
     
    Bookmark   387 citations  
  • Explanatory instability.Robert W. Batterman - 1992 - Noûs 26 (3):325-348.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Hydrodynamics versus molecular dynamics: Intertheory relations in condensed matter physics.Robert W. Batterman - 2006 - Philosophy of Science 73 (5):888-904.
    This paper considers the relationship between continuum hydrodynamics and discrete molecular dynamics in the context of explaining the behavior of breaking droplets. It is argued that the idealization of a fluid as a continuum is actually essential for a full explanation of the drop breaking phenomenon and that, therefore, the less "fundamental," emergent hydrodynamical theory plays an ineliminable role in our understanding.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Aggregativity: Reductive heuristics for finding emergence.William C. Wimsatt - 1997 - Philosophy of Science 64 (4):372-84.
    Most philosophical accounts of emergence are incompatible with reduction. Most scientists regard a system property as emergent relative to properties of the system's parts if it depends upon their mode of organization--a view consistent with reduction. Emergence can be analyzed as a failure of aggregativity--a state in which "the whole is nothing more than the sum of its parts." Aggregativity requires four conditions, giving tools for analyzing modes of organization. Differently met for different decompositions of the system, and in different (...)
    Download  
     
    Export citation  
     
    Bookmark   110 citations  
  • Physical emergence, diachronic and synchronic.Alexander Rueger - 2000 - Synthese 124 (3):297-322.
    This paper explicates two notions of emergencewhich are based on two ways of distinguishinglevels of properties for dynamical systems.Once the levels are defined, the strategies ofcharacterizing the relation of higher level to lower levelproperties as diachronic and synchronic emergenceare the same. In each case, the higher level properties aresaid to be emergent if they are novel or irreducible with respect to the lower level properties. Novelty andirreducibility are given precise meanings in terms of the effectsthat the change of a bifurcation (...)
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • Emergence: A Philosophical Account.Paul Humphreys - 2016 - New York, NY, United States of America: Oup Usa.
    Emergence develops a novel account of diachronic ontological emergence called transformational emergence and locates it in an established historical framework. The author shows how many problems affecting ontological emergence result from a dominant but inappropriate metaphysical tradition and provides a comprehensive assessment of current theories of emergence.
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • (1 other version)Creating Modern Probability: Its Mathematics, Physics and Philosophy in Historical Perspective.Lawrence Sklar & Jan von Plato - 1994 - Journal of Philosophy 91 (11):622.
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • M. STREVENSBigger Than Chaos: Understanding Complexity Through Probability. [REVIEW]M. Strevens - 2010 - British Journal for the Philosophy of Science 61 (4):875-882.
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  • Explaining Chaos.Peter Smith - 2000 - Philosophical Quarterly 50 (198):126-128.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • (1 other version)The Structure of Science: Problems in the Logic of Scientific Explanation.Ernest Nagel - 1961 - Mind 72 (287):429-441.
    Download  
     
    Export citation  
     
    Bookmark   294 citations  
  • Relating theories via renormalization.Leo P. Kadanoff - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (1):22-39.
    The renormalization method is specifically aimed at connecting theories describing physical processes at different length scales and thereby connecting different theories in the physical sciences.The renormalization method used today is the outgrowth of 150 years of scientific study of thermal physics and phase transitions. Different phases of matter show qualitatively different behaviors separated by abrupt phase transitions. These qualitative differences seem to be present in experimentally observed condensed-matter systems. However, the “extended singularity theorem” in statistical mechanics shows that sharp changes (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • .Charlotte Werndl & Roman Frigg - 2016
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • (1 other version)Infinite Systems in SM Explanations: Thermodynamic Limit, Renormalization (semi-) Groups, and Irreversibility.Chuang Liu - 2001 - Philosophy of Science 68 (S3):S325-S344.
    This paper examines the justifications for using infinite systems to ‘recover’ thermodynamic properties, such as phase transitions, critical phenomena, and irreversibility, from the micro-structure of matter in bulk. Section 2 is a summary of such rigorous methods as in taking the thermodynamic limit to recover PT and in using renormalization group approach to explain the universality of critical exponents. Section 3 examines various possible justifications for taking TL on physically finite systems. Section 4 discusses the legitimacy of applying TL to (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Explaining quantum spontaneous symmetry breaking.Chuang Liu & Gérard G. Emch - 2005 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36 (1):137-163.
    Two alternative accounts of quantum spontaneous symmetry breaking (SSB) are compared and one of them, the decompositional account in the algebraic approach, is argued to be superior for understanding quantum SSB. Two exactly solvable models are given as applications of our account -- the Weiss-Heisenberg model for ferromagnetism and the BCS model for superconductivity. Finally, the decompositional account is shown to be more conducive to the causal explanation of quantum SSB.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Is More Different? Emergent Properties in Physics.Paul Mainwood - unknown
    This thesis gives a philosophical assessment of a contemporary movement, influential amongst physicists, about the status of microscopic and macroscopic properties. The fountainhead for the movement was a short 1972 paper `More is Different', written by the condensed-matter physicist, Philip Anderson. Each of the chapters is concerned with themes mentioned in that paper, or subsequently expounded by Anderson and his followers. In Chapter 1, I aim to locate Anderson's existence claims for `emergent properties' within the metaphysical, epistemological and methodological doctrines (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • De Finetti's generalizations of exchangeability.Persi Diaconis & David Freedman - 1971 - In Richard C. Jeffrey (ed.), Studies in Inductive Logic and Probability. Berkeley: University of California Press. pp. 2--233.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Between classical and quantum.Nicolaas P. Landsman - 2007 - Handbook of the Philosophy of Science 2:417--553.
    The relationship between classical and quantum theory is of central importance to the philosophy of physics, and any interpretation of quantum mechanics has to clarify it. Our discussion of this relationship is partly historical and conceptual, but mostly technical and mathematically rigorous, including over 500 references. For example, we sketch how certain intuitive ideas of the founders of quantum theory have fared in the light of current mathematical knowledge. One such idea that has certainly stood the test of time is (...)
    Download  
     
    Export citation  
     
    Bookmark   75 citations  
  • Whose Devil? Which Details?Gordon Belot - 2005 - Philosophy of Science 72 (1):128-153.
    Batterman has recently argued that fundamental theories are typically explanatorily inadequate, in that there exist physical phenomena whose explanation requires that the conceptual apparatus of a fundamental theory be supplemented by that of a less fundamental theory. This paper is an extended critical commentary on that argument: situating its importance, describing its structure, and developing a line of objection to it. The objection is that in the examples Batterman considers, the mathematics of the less fundamental theory is definable in terms (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations