Switch to: References

Add citations

You must login to add citations.
  1. Idealizations and Analogies: Explaining Critical Phenomena.Quentin Rodriguez - 2021 - Studies in History and Philosophy of Science Part A 89 (C):235-247.
    The “universality” of critical phenomena is much discussed in philosophy of scientific explanation, idealizations and philosophy of physics. Lange and Reutlinger recently opposed Batterman concerning the role of some deliberate distortions in unifying a large class of phenomena, regardless of microscopic constitution. They argue for an essential explanatory role for “commonalities” rather than that of idealizations. Building on Batterman's insight, this article aims to show that assessing the differences between the universality of critical phenomena and two paradigmatic cases of “commonality (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Towards a theory of emergence for the physical sciences.Sebastian De Haro - 2019 - European Journal for Philosophy of Science 9 (3):1-52.
    I begin to develop a framework for emergence in the physical sciences. Namely, I propose to explicate ontological emergence in terms of the notion of ‘novel reference’, and of an account of interpretation as a map from theory to world. I then construe ontological emergence as the “failure of the interpretation to mesh” with an appropriate linkage map between theories. Ontological emergence can obtain between theories that have the same extension but different intensions, and between theories that have both different (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Towards a theory of emergence for the physical sciences.Sebastian De Haro - 2019 - European Journal for Philosophy of Science 9 (3):1-52.
    I begin to develop a framework for emergence in the physical sciences. Namely, I propose to explicate ontological emergence in terms of the notion of ‘novel reference’, and of an account of interpretation as a map from theory to world. I then construe ontological emergence as the “failure of the interpretation to mesh” with an appropriate linkage map between theories. Ontological emergence can obtain between theories that have the same extension but different intensions, and between theories that have both different (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Towards a theory of emergence for the physical sciences.Sebastian De Haro - 2019 - European Journal for Philosophy of Science 9 (3):1-52.
    I begin to develop a framework for emergence in the physical sciences. Namely, I propose to explicate ontological emergence in terms of the notion of ‘novel reference’, and of an account of interpretation as a map from theory to world. I then construe ontological emergence as the “failure of the interpretation to mesh” with an appropriate linkage map between theories. Ontological emergence can obtain between theories that have the same extension but different intensions, and between theories that have both different (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Conceptual Aspects of Gauge/Gravity Duality.Sebastian De Haro, Daniel R. Mayerson & Jeremy N. Butterfield - 2016 - Foundations of Physics 46 (11):1381-1425.
    We give an introductory review of gauge/gravity duality, and associated ideas of holography, emphasising the conceptual aspects. The opening sections gather the ingredients, viz. anti-de Sitter spacetime, conformal field theory and string theory, that we need for presenting, in Sect. 5, the central and original example: Maldacena’s AdS/CFT correspondence. Sections 6 and 7 develop the ideas of this example, also in applications to condensed matter systems, QCD, and hydrodynamics. Sections 8 and 9 discuss the possible extensions of holographic ideas to (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Objectivity and the Method of Arbitrary Functions.Chloé de Canson - 2022 - British Journal for the Philosophy of Science 73 (3):663-684.
    There is widespread excitement in the literature about the method of arbitrary functions: many take it to show that it is from the dynamics of systems that the objectivity of probabilities emerge. In this paper, I differentiate three ways in which a probability function might be objective, and I argue that the method of arbitrary functions cannot help us show that dynamics objectivise probabilities in any of these senses.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Combining finite and infinite elements: Why do we use infinite idealizations in engineering?Silvia De Bianchi - 2019 - Synthese 196 (5):1733-1748.
    This contribution sheds light on the role of infinite idealization in structural analysis, by exploring how infinite elements and finite element methods are combined in civil engineering models. This combination, I claim, should be read in terms of a ‘complementarity function’ through which the representational ideal of completeness is reached in engineering model-building. Taking a cue from Weisberg’s definition of multiple-model idealization, I highlight how infinite idealizations are primarily meant to contribute to the prediction of structural behavior in Multiphysics approaches.
    Download  
     
    Export citation  
     
    Bookmark  
  • A contextualist approach to emergence.Esteban Céspedes - 2020 - Principia: An International Journal of Epistemology 24 (1):89-119.
    What is exactly the emergence relation? In which sense is irreducibility associated with it besides being assumed by definition? Although in many cases the explanatory role of emergent states does not exceed the explanatory role of more basic states, this does not speak against the fact that, for some relevant explanatory contexts, emergent states are irreducible. On this basis, an epistemic concept of the emergence relation that does not depend strictly on irreducibility is here offered.
    Download  
     
    Export citation  
     
    Bookmark  
  • Introduction: Principles of quantum gravity.Karen Crowther & Dean Rickles - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 46 (2):135-141.
    In this introduction, we describe the rationale behind this special issue on Principles of Quantum Gravity. We explain what we mean by ‘principles’ and relate this to the various contributions. Finally, we draw out some general themes that can be found running throughout these contributions.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Inter-theory Relations in Quantum Gravity: Correspondence, Reduction and Emergence.Karen Crowther - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 63:74-85.
    Relationships between current theories, and relationships between current theories and the sought theory of quantum gravity (QG), play an essential role in motivating the need for QG, aiding the search for QG, and defining what would count as QG. Correspondence is the broad class of inter-theory relationships intended to demonstrate the necessary compatibility of two theories whose domains of validity overlap, in the overlap regions. The variety of roles that correspondence plays in the search for QG are illustrated, using examples (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Decoupling emergence and reduction in physics.Karen Crowther - 2015 - European Journal for Philosophy of Science 5 (3):419-445.
    An effective theory in physics is one that is supposed to apply only at a given length scale; the framework of effective field theory describes a ‘tower’ of theories each applying at different length scales, where each ‘level’ up is a shorter-scale theory. Owing to subtlety regarding the use and necessity of EFTs, a conception of emergence defined in terms of reduction is irrelevant. I present a case for decoupling emergence and reduction in the philosophy of physics. This paper develops (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • As below, so before: ‘synchronic’ and ‘diachronic’ conceptions of spacetime emergence.Karen Crowther - 2020 - Synthese 198 (8):7279-7307.
    Typically, a less fundamental theory, or structure, emerging from a more fundamental one is an example of synchronic emergence. A model emerging from a prior model upon which it nevertheless depends is an example of diachronic emergence. The case of spacetime emergent from quantum gravity and quantum cosmology challenges these two conceptions of emergence. Here, I propose two more-general conceptions of emergence, analogous to the synchronic and diachronic ones, but which are potentially applicable to the case of emergent spacetime: an (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Ernest Nagel's Model of Reduction and Theory Change.Bohang Chen - 2023 - International Studies in the Philosophy of Science 36 (1):19-37.
    A longstanding criticism of Ernest Nagel's model of reduction is that it fails to take theory change into account. This criticism builds on the received view that Nagelian reductions are incompatible with theory change. This article challenges the received view by showing that Nagel's model can easily accommodate theory change. Indeed, Nagel's model is essentially static as it only gives unchanging formal and nonformal conditions for reduction; in contrast, theory change belongs to the dynamic history of science; as a result, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Renormalization group methods: Which kind of explanation?Elena Castellani & Emilia Margoni - 2022 - Studies in History and Philosophy of Science Part A 95 (C):158-166.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Reduction, Emergence, and Renormalization.Jeremy Butterfield - 2014 - Journal of Philosophy 111 (1):5-49.
    In previous work, I described several examples combining reduction and emergence: where reduction is understood a la Ernest Nagel, and emergence is understood as behaviour that is novel. Here, my aim is again to reconcile reduction and emergence, for a case which is apparently more problematic than those I treated before: renormalization. My main point is that renormalizability being a generic feature at accessible energies gives us a conceptually unified family of Nagelian reductions. That is worth saying since philosophers tend (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Emergence, Reduction and Supervenience: A Varied Landscape. [REVIEW]Jeremy Butterfield - 2011 - Foundations of Physics 41 (6):920-959.
    This is one of two papers about emergence, reduction and supervenience. It expounds these notions and analyses the general relations between them. The companion paper analyses the situation in physics, especially limiting relations between physical theories. I shall take emergence as behaviour that is novel and robust relative to some comparison class. I shall take reduction as deduction using appropriate auxiliary definitions. And I shall take supervenience as a weakening of reduction, viz. to allow infinitely long definitions. The overall claim (...)
    Download  
     
    Export citation  
     
    Bookmark   96 citations  
  • Smaller than a Breadbox: Scale and Natural Kinds.Julia R. Bursten - 2018 - British Journal for Philosophy of Science 69 (1):1-23.
    ABSTRACT I propose a division of the literature on natural kinds into metaphysical worries, semantic worries, and methodological worries. I argue that the latter set of worries, which concern how classification influences scientific practices, should occupy centre stage in philosophy of science discussions about natural kinds. I apply this methodological framework to the problems of classifying chemical species and nanomaterials. I show that classification in nanoscience differs from classification in chemistry because the latter relies heavily on compositional identity, whereas the (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • On emergence in gauge theories at the ’t Hooft limit‘.Nazim Bouatta & Jeremy Butterfield - 2015 - European Journal for Philosophy of Science 5 (1):55-87.
    Quantum field theories are notoriously difficult to understand, physically as well as philosophically. The aim of this paper is to contribute to a better conceptual understanding of gauge quantum field theories, such as quantum chromodynamics, by discussing a famous physical limit, the ’t Hooft limit, in which the theory concerned often simplifies. The idea of the limit is that the number N of colours goes to infinity. The simplifications that can happen in this limit, and that we will consider, are: (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • From dressed electrons to quasiparticles: The emergence of emergent entities in quantum field theory.Alexander S. Blum & Christian Joas - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 53:1-8.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Reichenbach’s Transcendental Probability.Fedde Benedictus & Dennis Dieks - 2015 - Erkenntnis 80 (1):15-38.
    The aim of this article is twofold. First, we shall review and analyse the neo-kantian justification for the application of probabilistic concepts in science that was defended by Hans Reichenbach early in his career, notably in his dissertation of 1916. At first sight this kantian approach seems to contrast sharply with Reichenbach’s later logical positivist, frequentist viewpoint. But, and this is our second goal, we shall attempt to show that there is an underlying continuity in Reichenbach’s thought: typical features of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Bottoms up: The Standard Model Effective Field Theory from a model perspective.Philip Bechtle, Cristin Chall, Martin King, Michael Krämer, Peter Mättig & Michael Stöltzner - 2022 - Studies in History and Philosophy of Science Part A 92:129-143.
    Experiments in particle physics have hitherto failed to produce any significant evidence for the many explicit models of physics beyond the Standard Model (BSM) that had been proposed over the past decades. As a result, physicists have increasingly turned to model-independent strategies as tools in searching for a wide range of possible BSM effects. In this paper, we describe the Standard Model Effective Field Theory (SM-EFT) and analyse it in the context of the philosophical discussions about models, theories, and (bottom-up) (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Infinite lies and explanatory ties: idealization in phase transitions.Sam Baron - 2019 - Synthese 196 (5):1939-1961.
    Infinite idealizations appear in our best scientific explanations of phase transitions. This is thought by some to be paradoxical. In this paper I connect the existing literature on the phase transition paradox to work on the concept of indispensability, which arises in discussions of realism and anti-realism within the philosophy of science and the philosophy of mathematics. I formulate a version of the phase transition paradox based on the idea that infinite idealizations are explanatorily indispensable to our best science, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Role of Bridge Laws in Intertheoretic Relations.Sorin Bangu - 2011 - Philosophy of Science 78 (5):1108-1119.
    What is the role of bridge laws in inter-theoretic relations? An assumption shared by many views about these relations is that bridge laws enable reductions. In this article, I acknowledge the naturalness of this assumption, but I question it by presenting a context within thermal physics (involving phase transitions) in which the bridge laws, puzzlingly, seem to contribute to blocking the reduction.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Discontinuities and singularities, data and phenomena: for Referentialism.Sorin Bangu - 2019 - Synthese 196 (5):1919-1937.
    The paper rebuts a currently popular criticism against a certain take on the referential role of discontinuities and singularities in the physics of first-order phase transitions. It also elaborates on a proposal I made previously on how to understand this role within the framework provided by the distinction between data and phenomena.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The infinite limit as an eliminable approximation for phase transitions.Vincent Ardourel - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 62:71-84.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Finite-size scaling theory: Quantitative and qualitative approaches to critical phenomena.Vincent Ardourel & Sorin Bangu - 2023 - Studies in History and Philosophy of Science Part A 100 (C):99-106.
    Download  
     
    Export citation  
     
    Bookmark  
  • Who’s afraid of common knowledge?Giorgio Sbardolini - 2024 - Philosophical Studies 181 (4):859-877.
    Some arguments against the assumption that ordinary people may share common knowledge are sound. The apparent cost of such arguments is the rejection of scientific theories that appeal to common knowledge. My proposal is to accept the arguments without rejecting the theories. On my proposal, common knowledge is shared by ideally rational people, who are not just mathematically simple versions of ordinary people. They are qualitatively different from us, and theorizing about them does not lead to predictions about our behavior. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Spacetime Emergence in Quantum Gravity: Functionalism and the Hard Problem.Baptiste Le Bihan - 2021 - Synthese 199 (2):371–393.
    Spacetime functionalism is the view that spacetime is a functional structure implemented by a more fundamental ontology. Lam and Wüthrich have recently argued that spacetime functionalism helps to solve the epistemological problem of empirical coherence in quantum gravity and suggested that it also (dis)solves the hard problem of spacetime, namely the problem of offering a picture consistent with the emergence of spacetime from a non-spatio-temporal structure. First, I will deny that spacetime functionalism solves the hard problem by showing that it (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Spacetime is as spacetime does.Vincent Lam & Christian Wüthrich - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 64:39-51.
    Theories of quantum gravity generically presuppose or predict that the reality underlying relativistic spacetimes they are describing is significantly non-spatiotemporal. On pain of empirical incoherence, approaches to quantum gravity must establish how relativistic spacetime emerges from their non-spatiotemporal structures. We argue that in order to secure this emergence, it is sufficient to establish that only those features of relativistic spacetimes functionally relevant in producing empirical evidence must be recovered. In order to complete this task, an account must be given of (...)
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • Spacetime Emergence: Collapsing the Distinction Between Content and Context?Karen Crowther - 2022 - In Shyam Wuppuluri & Ian Stewart (eds.), From Electrons to Elephants and Elections: Saga of Content and Context. Springer. pp. 379–402.
    Several approaches to developing a theory of quantum gravity suggest that spacetime—as described by general relativity—is not fundamental. Instead, spacetime is supposed to be explained by reference to the relations between more fundamental entities, analogous to `atoms' of spacetime, which themselves are not (fully) spatiotemporal. Such a case may be understood as emergence of \textit{content}: a `hierarchical' case of emergence, where spacetime emerges at a `higher', or less-fundamental, level than its `lower-level' non-spatiotempral basis. But quantum gravity cosmology also presents us (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Symmetry Breaking.Elena Castellani & Radin Dardashti - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    A brief introduction to the physics and philosophy of symmetry breaking.
    Download  
     
    Export citation  
     
    Bookmark  
  • Models, Idealisations, and Realism.Juha Saatsi - 2016 - In Emiliano Ippoliti, Fabio Sterpetti & Thomas Nickles (eds.), Models and Inferences in Science. Cham: Springer.
    I explore a challenge that idealisations pose to scientific realism and argue that the realist can best accommodate idealisations by capitalising on certain modal features of idealised models that are underwritten by laws of nature.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Philosophy of the Physical Sciences.Chris Smeenk & Hoefer Carl - 2016 - In Paul Humphreys (ed.), The Oxford Handbook of Philosophy of Science. Oxford University Press USA.
    The authors survey some debates about the nature and structure of physical theories and about the connections between our physical theories and naturalized metaphysics. The discussion is organized around an “ideal view” of physical theories and criticisms that can be raised against it. This view includes controversial commitments regarding the best analysis of physical modalities and intertheory relations. The authors consider the case in favor of taking laws as the primary modal notion, discussing objections related to alleged violations of the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Reduction.A. Hütterman & A. C. Love - 2016 - In Paul Humphreys (ed.), The Oxford Handbook of Philosophy of Science. Oxford University Press USA. pp. 460-484.
    Reduction and reductionism have been central philosophical topics in analytic philosophy of science for more than six decades. Together they encompass a diversity of issues from metaphysics and epistemology. This article provides an introduction to the topic that illuminates how contemporary epistemological discussions took their shape historically and limns the contours of concrete cases of reduction in specific natural sciences. The unity of science and the impulse to accomplish compositional reduction in accord with a layer-cake vision of the sciences, the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Theoretical Relicts: Progress, Reduction, and Autonomy.Katie Robertson & Alastair Wilson - forthcoming - British Journal for the Philosophy of Science.
    When once-successful physical theories are abandoned, common wisdom has it that their characteristic theoretical entities are abandoned with them: examples include phlogiston, light rays, Newtonian forces, Euclidean space. But sometimes a theory sees ongoing use, despite being superseded. What should scientific realists say about the characteristic entities of the theories in such cases? The standard answer is that these ‘theoretical relicts’ are merely useful fictions. In this paper we offer a different answer. We start by distinguishing horizontal reduction (in which (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the continuum fallacy: is temperature a continuous function?Aditya Jha, Douglas Campbell, Clemency Montelle & Phillip L. Wilson - 2023 - Foundations of Physics 53 (69):1-29.
    It is often argued that the indispensability of continuum models comes from their empirical adequacy despite their decoupling from the microscopic details of the modelled physical system. There is thus a commonly held misconception that temperature varying across a region of space or time can always be accurately represented as a continuous function. We discuss three inter-related cases of temperature modelling — in phase transitions, thermal boundary resistance and slip flows — and show that the continuum view is fallacious on (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Effective Spacetime: Understanding Emergence in Effective Field Theory and Quantum Gravity.Karen Crowther - 2016 - Cham: Springer.
    This book discusses the notion that quantum gravity may represent the "breakdown" of spacetime at extremely high energy scales. If spacetime does not exist at the fundamental level, then it has to be considered "emergent", in other words an effective structure, valid at low energy scales. The author develops a conception of emergence appropriate to effective theories in physics, and shows how it applies (or could apply) in various approaches to quantum gravity, including condensed matter approaches, discrete approaches, and loop (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • What levels of explanation in the behavioural sciences?Giuseppe Boccignone & Roberto Cordeschi (eds.) - 2015 - Frontiers Media SA.
    Complex systems are to be seen as typically having multiple levels of organization. For instance, in the behavioural and cognitive sciences, there has been a long lasting trend, promoted by the seminal work of David Marr, putting focus on three distinct levels of analysis: the computational level, accounting for the What and Why issues, the algorithmic and the implementational levels specifying the How problem. However, the tremendous developments in neuroscience knowledge about processes at different scales of organization together with the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Nanomaterials and Intertheoretical Relations: Macro and Nanochemistry as Emergent Levels.Alfio Zambon & Mariana Córdoba - 2021 - Foundations of Science 26 (2):355-370.
    The purpose of this work is to discuss which relation can be established between molecular chemistry, on the one hand, and macrochemistry and nanochemistry, on the other hand. In order to do this, we will consider molecular chemistry as an underlying level, and macrochemistry and nanochemistry as emergent levels. Emergence is characterized in very different ways in the philosophical literature; we will not discuss those differences. We will address a distinction between inter-domain emergence and intra-domain emergence. It is our purpose (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Explaining Universality: Infinite Limit Systems in the Renormalization Group Method.Jingyi Wu - 2021 - Synthese (5-6):14897-14930.
    I analyze the role of infinite idealizations used in the renormalization group (RG hereafter) method in explaining universality across microscopically different physical systems in critical phenomena. I argue that despite the reference to infinite limit systems such as systems with infinite correlation lengths during the RG process, the key to explaining universality in critical phenomena need not involve infinite limit systems. I develop my argument by introducing what I regard as the explanatorily relevant property in RG explanations: linearization* property; I (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The case for black hole thermodynamics part II: Statistical mechanics.David Wallace - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 66 (C):103-117.
    I present in detail the case for regarding black hole thermodynamics as having a statistical-mechanical explanation in exact parallel with the statistical-mechanical explanation believed to underly the thermodynamics of other systems. I focus on three lines of argument: zero-loop and one-loop calculations in quantum general relativity understood as a quantum field theory, using the path-integral formalism; calculations in string theory of the leading-order terms, higher-derivative corrections, and quantum corrections, in the black hole entropy formula for extremal and near-extremal black holes; (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Stating structural realism: mathematics‐first approaches to physics and metaphysics.David Wallace - 2022 - Philosophical Perspectives 36 (1):345-378.
    I respond to the frequent objection that structural realism fails to sharply state an alternative to the standard predicate-logic, object / property / relation, way of doing metaphysics. The approach I propose is based on what I call a ‘math-first’ approach to physical theories (close to the so-called ‘semantic view of theories') where the content of a physical theory is to be understood primarily in terms of its mathematical structure and the representational relations it bears to physical systems, rather than (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • String Theory and the Scientific Method.Tiziana Vistarini - 2014 - International Studies in the Philosophy of Science 28 (1):108-111.
    Download  
     
    Export citation  
     
    Bookmark  
  • The paradox of phase transitions in the light of constructive mathematics.Pauline van Wierst - 2019 - Synthese 196 (5):1863-1884.
    The paradox of phase transitions raises the problem of how to reconcile the fact that we see phase transitions happen in concrete, finite systems around us, with the fact that our best theories—i.e. statistical-mechanical theories of phase transitions—tell us that phase transitions occur only in infinite systems. In this paper we aim to clarify to which extent this paradox is relative to the mathematical framework which is used in these theories, i.e. classical mathematics. To this aim, we will explore the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Emergent Phenomena in Nature: A Paradox with Theory?Christiaan J. F. van de Ven - 2023 - Foundations of Physics 53 (5):1-23.
    The existence of various physical phenomena stems from the concept called asymptotic emergence, that is, they seem to be exclusively reserved for certain limiting theories. Important examples are spontaneous symmetry breaking (SSB) and phase transitions: these would only occur in the classical or thermodynamic limit of underlying finite quantum systems, since for finite quantum systems, due to the uniqueness of the relevant states, such phenomena are excluded by Theory. In Nature, however, finite quantum systems describing real materials clearly exhibit such (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The approach towards equilibrium in Lanford’s theorem.Giovanni Valente - 2014 - European Journal for Philosophy of Science 4 (3):309-335.
    This paper develops a philosophical investigation of the merits and faults of a theorem by Lanford , Lanford , Lanford for the problem of the approach towards equilibrium in statistical mechanics. Lanford’s result shows that, under precise initial conditions, the Boltzmann equation can be rigorously derived from the Hamiltonian equations of motion for a hard spheres gas in the Boltzmann-Grad limit, thereby proving the existence of a unique solution of the Boltzmann equation, at least for a very short amount of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Complexity-based Theories of Emergence: Criticisms and Constraints.Kari L. Theurer - 2014 - International Studies in the Philosophy of Science 28 (3):277-301.
    In recent years, many philosophers of science have attempted to articulate a theory of non-epistemic emergence that is compatible with mechanistic explanation and incompatible with reductionism. The 2005 account of Fred C. Boogerd et al. has been particularly influential. They argued that a systemic property was emergent if it could not be predicted from the behaviour of less complex systems. Here, I argue that Boogerd et al.'s attempt to ground emergence in complexity guarantees that we will see emergence, but at (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Holography and emergence.Nicholas J. Teh - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (3):300-311.
    In this paper, I discuss one form of the idea that spacetime and gravity might ‘emerge’ from quantum theory, i.e. via a holographic duality, and in particular via AdS/CFT duality. I begin by giving a survey of the general notion of duality, as well as its connection to emergence. I then review the AdS/CFT duality and proceed to discuss emergence in this context. We will see that it is difficult to find compelling arguments for the emergence of full quantum gravity (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Proving the principle: Taking geodesic dynamics too seriously in Einstein's theory.Michael Tamir - 2012 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 43 (2):137-154.
    In this paper I critically review the long history of attempts to formulate and derive the geodesic principle, which claims that massive bodies follow geodesic paths in general relativity theory. I argue that if the principle is interpreted as a dynamical law of motion describing the actual evolution of gravitating bodies as endorsed by Einstein, then it is impossible to apply the law to massive bodies in a way that is coherent with his own field equations. Rejecting this canonical interpretation, (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Proving the principle: Taking geodesic dynamics too seriously in Einstein’s theory.Michael Tamir - 2012 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 43 (2):137-154.
    In this paper I critically review the long history of attempts to formulate and derive the geodesic principle, which claims that massive bodies follow geodesic paths in general relativity theory. I argue that if the principle is interpreted as a dynamical law of motion describing the actual evolution of gravitating bodies as endorsed by Einstein, then it is impossible to apply the law to massive bodies in a way that is coherent with his own field equations. Rejecting this canonical interpretation, (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations