Switch to: Citations

Add references

You must login to add references.
  1. Algebraic foundations of many-valued reasoning.Roberto Cignoli - 1999 - Boston: Kluwer Academic Publishers. Edited by Itala M. L. D'Ottaviano & Daniele Mundici.
    This unique textbook states and proves all the major theorems of many-valued propositional logic and provides the reader with the most recent developments and trends, including applications to adaptive error-correcting binary search. The book is suitable for self-study, making the basic tools of many-valued logic accessible to students and scientists with a basic mathematical knowledge who are interested in the mathematical treatment of uncertain information. Stressing the interplay between algebra and logic, the book contains material never before published, such as (...)
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  • (1 other version)A theorem about infinite-valued sentential logic.Robert McNaughton - 1951 - Journal of Symbolic Logic 16 (1):1-13.
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • A complete many-valued logic with product-conjunction.Petr Hájek, Lluis Godo & Francesc Esteva - 1996 - Archive for Mathematical Logic 35 (3):191-208.
    A simple complete axiomatic system is presented for the many-valued propositional logic based on the conjunction interpreted as product, the coresponding implication (Goguen's implication) and the corresponding negation (Gödel's negation). Algebraic proof methods are used. The meaning for fuzzy logic (in the narrow sense) is shortly discussed.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Residuated fuzzy logics with an involutive negation.Francesc Esteva, Lluís Godo, Petr Hájek & Mirko Navara - 2000 - Archive for Mathematical Logic 39 (2):103-124.
    Residuated fuzzy logic calculi are related to continuous t-norms, which are used as truth functions for conjunction, and their residua as truth functions for implication. In these logics, a negation is also definable from the implication and the truth constant $\overline{0}$ , namely $\neg \varphi$ is $\varphi \to \overline{0}$. However, this negation behaves quite differently depending on the t-norm. For a nilpotent t-norm (a t-norm which is isomorphic to Łukasiewicz t-norm), it turns out that $\neg$ is an involutive negation. However, (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • An algebraic approach to propositional fuzzy logic.Franco Montagna - 2000 - Journal of Logic, Language and Information 9 (1):91-124.
    We investigate the variety corresponding to a logic, which is the combination of ukasiewicz Logic and Product Logic, and in which Gödel Logic is interpretable. We present an alternative axiomatization of such variety. We also investigate the variety, called the variety of algebras, corresponding to the logic obtained from by the adding of a constant and of a defining axiom for one half. We also connect algebras with structures, called f-semifields, arising from the theory of lattice-ordered rings, and prove that (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations