Switch to: Citations

Add references

You must login to add references.
  1. Explaining the emergence of cooperative phenomena.Chuang Liu - 1999 - Philosophy of Science 66 (3):106.
    Phase transitions are well-understood phenomena in thermodynamics (TD), but it turns out that they are mathematically impossible in finite SM systems. Hence, phase transitions are truly emergent properties. They appear again at the thermodynamic limit (TL), i.e., in infinite systems. However, most, if not all, systems in which they occur are finite, so whence comes the justification for taking TL? The problem is then traced back to the TD characterization of phase transitions, and it turns out that the characterization is (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Malament and Zabell on Gibbs phase averaging.Stephen Leeds - 1989 - Philosophy of Science 56 (2):325-340.
    In their paper "Why Gibbs Phase Averages Work--The Role of Ergodic Theory" (1980), David Malament and Sandy Zabell attempt to explain why phase averaging over the microcanonical ensemble gives correct predictions for the values of thermodynamic observables, for an ergodic system at equilibrium. Their idea is to bypass the traditional use of limit theorems, by relying on a uniqueness result about the microcanonical measure--namely, that it is uniquely stationary translation-continuous. I argue that their explanation begs questions about the relationship between (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Autobiographical Notes.Max Black, Albert Einstein & Paul Arthur Schilpp - 1949 - Journal of Symbolic Logic 15 (2):157.
    Download  
     
    Export citation  
     
    Bookmark   277 citations  
  • (2 other versions)The nature of the physical world.Arthur Stanley Eddington - 1928 - London,: Dent.
    1929. The course of Gifford Lectures that Eddington delivered in the University of Edinburgh in January to March 1927.
    Download  
     
    Export citation  
     
    Bookmark   192 citations  
  • Reducing thermodynamics to statistical mechanics: The case of entropy.Craig Callender - 1999 - Journal of Philosophy 96 (7):348-373.
    This article argues that most of the approaches to the foundations of statistical mechanics have severed their link with the original foundational project, the project of demonstrating how real mechanical systems can behave thermodynamically.
    Download  
     
    Export citation  
     
    Bookmark   79 citations  
  • Exorcist XIV: The Wrath of Maxwell’s Demon. Part I. From Maxwell to Szilard.John Earman & John D. Norton - 1998 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 29 (4):435-471.
    In this first part of a two-part paper, we describe efforts in the early decades of this century to restrict the extent of violations of the Second Law of thermodynamics that were brought to light by the rise of the kinetic theory and the identification of fluctuation phenomena. We show how these efforts mutated into Szilard’s proposal that Maxwell’s Demon is exorcised by proper attention to the entropy costs associated with the Demon’s memory and information acquisition. In the second part (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • (1 other version)Combining Statistical-Thermodynamics and Relativity Theory: Methodological and Foundations Problems.John Earman - 1978 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1978:157 - 185.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Bluff Your Way in the Second Law of Thermodynamics.Jos Uffink - 2001 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 32 (3):305-394.
    The aim of this article is to analyse the relation between the second law of thermodynamics and the so-called arrow of time. For this purpose, a number of different aspects in this arrow of time are distinguished, in particular those of time-reversal (non-)invariance and of (ir)reversibility. Next I review versions of the second law in the work of Carnot, Clausius, Kelvin, Planck, Gibbs, Caratheodory and Lieb and Yngvason, and investigate their connection with these aspects of the arrow of time. It (...)
    Download  
     
    Export citation  
     
    Bookmark   86 citations  
  • (1 other version)Review of Lawrence Sklar: Physics and Chance: Philosophical Issues in the Foundations of Statistical Mechanics[REVIEW]Tim Maudlin - 1995 - British Journal for the Philosophy of Science 46 (1):145-149.
    Download  
     
    Export citation  
     
    Bookmark   4 citations