Switch to: Citations

Add references

You must login to add references.
  1. Organic and tight.J. Cummings, M. Foreman & E. Schimmerling - 2009 - Annals of Pure and Applied Logic 160 (1):22-32.
    We define organic sets and organically stationary sequences, which generalize tight sets and tightly stationary sequences respectively. We show that there are stationary many inorganic sets and stationary many sets that are organic but not tight. Working in the Constructible Universe, we give a characterization of organic and tight sets in terms of fine structure. We answer a related question posed in [J. Cummings, M. Foreman, M. Magidor, Canonical structure in the universe of set theory: Part two, Ann. Pure Appl. (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (2 other versions)Squares, scales and stationary reflection.James Cummings, Matthew Foreman & Menachem Magidor - 2001 - Journal of Mathematical Logic 1 (01):35-98.
    Since the work of Gödel and Cohen, which showed that Hilbert's First Problem was independent of the usual assumptions of mathematics, there have been a myriad of independence results in many areas of mathematics. These results have led to the systematic study of several combinatorial principles that have proven effective at settling many of the important independent statements. Among the most prominent of these are the principles diamond and square discovered by Jensen. Simultaneously, attempts have been made to find suitable (...)
    Download  
     
    Export citation  
     
    Bookmark   105 citations  
  • (2 other versions)Scales, squares and reflection.James Cummings, Matthew Foreman & Menachem Magidor - 2001 - Journal of Mathematical Logic 1 (1):35-98.
    Since the work of Gödel and Cohen, which showed that Hilbert's First Problem was independent of the usual assumptions of mathematics, there have been a myriad of independence results in many areas of mathematics. These results have led to the systematic study of several combinatorial principles that have proven effective at settling many of the important independent statements. Among the most prominent of these are the principles diamond and square discovered by Jensen. Simultaneously, attempts have been made to find suitable (...)
    Download  
     
    Export citation  
     
    Bookmark   67 citations  
  • Canonical structure in the universe of set theory: Part two.James Cummings, Matthew Foreman & Menachem Magidor - 2006 - Annals of Pure and Applied Logic 142 (1):55-75.
    We prove a number of consistency results complementary to the ZFC results from our paper [J. Cummings, M. Foreman, M. Magidor, Canonical structure in the universe of set theory: part one, Annals of Pure and Applied Logic 129 211–243]. We produce examples of non-tightly stationary mutually stationary sequences, sequences of cardinals on which every sequence of sets is mutually stationary, and mutually stationary sequences not concentrating on a fixed cofinality. We also give an alternative proof for the consistency of the (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • The PCF Conjecture and Large Cardinals.Luís Pereira - 2008 - Journal of Symbolic Logic 73 (2):674 - 688.
    We prove that a combinatorial consequence of the negation of the PCF conjecture for intervals, involving free subsets relative to set mappings, is not implied by even the strongest known large cardinal axiom.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Canonical structure in the universe of set theory: part one.James Cummings, Matthew Foreman & Menachem Magidor - 2004 - Annals of Pure and Applied Logic 129 (1-3):211-243.
    We start by studying the relationship between two invariants isolated by Shelah, the sets of good and approachable points. As part of our study of these invariants, we prove a form of “singular cardinal compactness” for Jensen's square principle. We then study the relationship between internally approachable and tight structures, which parallels to a certain extent the relationship between good and approachable points. In particular we characterise the tight structures in terms of PCF theory and use our characterisation to prove (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Diagonal Prikry extensions.James Cummings & Matthew Foreman - 2010 - Journal of Symbolic Logic 75 (4):1383-1402.
    Download  
     
    Export citation  
     
    Bookmark   12 citations