Switch to: Citations

Add references

You must login to add references.
  1. Mathias–Prikry and Laver–Prikry type forcing.Michael Hrušák & Hiroaki Minami - 2014 - Annals of Pure and Applied Logic 165 (3):880-894.
    We study the Mathias–Prikry and Laver–Prikry forcings associated with filters on ω. We give a combinatorial characterization of Martinʼs number for these forcing notions and present a general scheme for analyzing preservation properties for them. In particular, we give a combinatorial characterization of those filters for which the Mathias–Prikry forcing does not add a dominating real.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Infinite-dimensional Ellentuck spaces and Ramsey-classification theorems.Natasha Dobrinen - 2016 - Journal of Mathematical Logic 16 (1):1650003.
    We extend the hierarchy of finite-dimensional Ellentuck spaces to infinite dimensions. Using uniform barriers [Formula: see text] on [Formula: see text] as the prototype structures, we construct a class of continuum many topological Ramsey spaces [Formula: see text] which are Ellentuck-like in nature, and form a linearly ordered hierarchy under projections. We prove new Ramsey-classification theorems for equivalence relations on fronts, and hence also on barriers, on the spaces [Formula: see text], extending the Pudlák–Rödl theorem for barriers on the Ellentuck (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Topological Ramsey spaces from Fraïssé classes, Ramsey-classification theorems, and initial structures in the Tukey types of p-points.Natasha Dobrinen, José G. Mijares & Timothy Trujillo - 2017 - Archive for Mathematical Logic 56 (7-8):733-782.
    A general method for constructing a new class of topological Ramsey spaces is presented. Members of such spaces are infinite sequences of products of Fraïssé classes of finite relational structures satisfying the Ramsey property. The Product Ramsey Theorem of Sokič is extended to equivalence relations for finite products of structures from Fraïssé classes of finite relational structures satisfying the Ramsey property and the Order-Prescribed Free Amalgamation Property. This is essential to proving Ramsey-classification theorems for equivalence relations on fronts, generalizing the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Mathias–Prikry and Laver type forcing; summable ideals, coideals, and +-selective filters.David Chodounský, Osvaldo Guzmán González & Michael Hrušák - 2016 - Archive for Mathematical Logic 55 (3-4):493-504.
    We study the Mathias–Prikry and the Laver type forcings associated with filters and coideals. We isolate a crucial combinatorial property of Mathias reals, and prove that Mathias–Prikry forcings with summable ideals are all mutually bi-embeddable. We show that Mathias forcing associated with the complement of an analytic ideal always adds a dominating real. We also characterize filters for which the associated Mathias–Prikry forcing does not add eventually different reals, and show that they are countably generated provided they are Borel. We (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Forcing with filters and complete combinatorics.Claude Laflamme - 1989 - Annals of Pure and Applied Logic 42 (2):125-163.
    We study ultrafilters produced by forcing, obtaining different combinatorics and related Rudin-Keisler ordering; in particular we answer a question of Baumgartner and Taylor regarding tensor products of ultrafilters. Adapting a method of Blass and Mathias, we show that in most cases the combinatorics satisfied by the ultrafilters recapture the forcing notion in the Lévy model.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Terminal notions in set theory.Jindřich Zapletal - 2001 - Annals of Pure and Applied Logic 109 (1-2):89-116.
    In mathematical practice certain formulas φ are believed to essentially decide all other natural properties of the object x. The purpose of this paper is to exactly quantify such a belief for four formulas φ, namely “x is a Ramsey ultrafilter”, “x is a free Souslin tree”, “x is an extendible strong Lusin set” and “x is a good diamond sequence”.
    Download  
     
    Export citation  
     
    Bookmark   1 citation