Switch to: Citations

Add references

You must login to add references.
  1. Is - kTr( ln ) the entropy in quantum mechanics.Orly Shenker - 1999 - British Journal for the Philosophy of Science 50 (1):33-48.
    In quantum mechanics, the expression for entropy is usually taken to be -kTr(ln), where is the density matrix. The convention first appears in Von Neumann's Mathematical Foundations of Quantum Mechanics. The argument given there to justify this convention is the only one hitherto offered. All the arguments in the field refer to it at one point or another. Here this argument is shown to be invalid. Moreover, it is shown that, if entropy is -kTr(ln), then perpetual motion machines are possible. (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • On the Equivalence of von Neumann and Thermodynamic Entropy.Carina E. A. Prunkl - 2020 - Philosophy of Science 87 (2):262-280.
    In 1932, John von Neumann argued for the equivalence of the thermodynamic entropy and −Trρlnρ, since known as the von Neumann entropy. Meir Hemmo and Orly R. Shenker recently challenged this argument by pointing out an alleged discrepancy between the two entropies in the single-particle case, concluding that they must be distinct. In this article, their argument is shown to be problematic as it allows for a violation of the second law of thermodynamics and is based on an incorrect calculation (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Statistical mechanics and thermodynamics: A Maxwellian view.Wayne C. Myrvold - 2011 - Studies in History and Philosophy of Science Part A 42 (4):237-243.
    One finds, in Maxwell's writings on thermodynamics and statistical physics, a conception of the nature of these subjects that differs in interesting ways from the way that they are usually conceived. In particular, though—in agreement with the currently accepted view—Maxwell maintains that the second law of thermodynamics, as originally conceived, cannot be strictly true, the replacement he proposes is different from the version accepted by most physicists today. The modification of the second law accepted by most physicists is a probabilistic (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Von Neumann’s Entropy Does Not Correspond to Thermodynamic Entropy.Meir Hemmo & Orly Shenker - 2006 - Philosophy of Science 73 (2):153-174.
    Von Neumann argued by means of a thought experiment involving measurements of spin observables that the quantum mechanical quantity is conceptually equivalent to thermodynamic entropy. We analyze Von Neumann's thought experiment and show that his argument fails. Over the past few years there has been a dispute in the literature regarding the Von Neumann entropy. It turns out that each contribution to this dispute addressed a different special case. In this paper we generalize the discussion and examine the full matrix (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The structure and interpretation of quantum mechanics.R. I. G. Hughes - 1989 - Cambridge, Mass.: Harvard University Press.
    R.I.G Hughes offers the first detailed and accessible analysis of the Hilbert-space models used in quantum theory and explains why they are so successful.
    Download  
     
    Export citation  
     
    Bookmark   138 citations  
  • The Von Neumann entropy: A reply to Shenker.Leah Henderson - 2003 - British Journal for the Philosophy of Science 54 (2):291-296.
    Shenker has claimed that Von Neumann's argument for identifying the quantum mechanical entropy with the Von Neumann entropy, S() = – ktr( log ), is invalid. Her claim rests on a misunderstanding of the idea of a quantum mechanical pure state. I demonstrate this, and provide a further explanation of Von Neumann's argument.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The Structure and Interpretation of Quantum Mechanics.Richard Healey & R. I. G. Hughes - 1992 - Philosophical Review 101 (3):720.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Exorcist XIV: The Wrath of Maxwell’s Demon. Part I. From Maxwell to Szilard.John Earman & John D. Norton - 1998 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 29 (4):435-471.
    In this first part of a two-part paper, we describe efforts in the early decades of this century to restrict the extent of violations of the Second Law of thermodynamics that were brought to light by the rise of the kinetic theory and the identification of fluctuation phenomena. We show how these efforts mutated into Szilard’s proposal that Maxwell’s Demon is exorcised by proper attention to the entropy costs associated with the Demon’s memory and information acquisition. In the second part (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • Exorcist XIV: The wrath of maxwell’s demon. Part II. from szilard to Landauer and beyond.John Earman & John D. Norton - 1999 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 30 (1):1-40.
    In this second part of our two-part paper we review and analyse attempts since 1950 to use information theoretic notions to exorcise Maxwell’s Demon. We argue through a simple dilemma that these attempted exorcisms are ineffective, whether they follow Szilard in seeking a compensating entropy cost in information acquisition or Landauer in seeking that cost in memory erasure. In so far as the Demon is a thermodynamic system already governed by the Second Law, no further supposition about information and entropy (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Thermodynamically Reversible Processes in Statistical Physics.John D. Norton - unknown
    Equilibrium states are used as limit states to define thermodynamically reversible processes. When these processes are implemented in statistical physics, these limit states become unstable and can change with time, due to thermal fluctuations. For macroscopic systems, the changes are insignificant on ordinary time scales and what little there is can be suppressed by macroscopically negligible, entropy-creating dissipation. For systems of molecular sizes, the changes are large on short time scales and can only sometimes be suppressed with significant entropy-creating dissipation. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Structure and Interpretation of Quantum Mechanics.R. I. G. Hughes - 1992 - Tijdschrift Voor Filosofie 54 (4):735-736.
    Download  
     
    Export citation  
     
    Bookmark   123 citations