Switch to: Citations

Add references

You must login to add references.
  1. Presburger arithmetic and recognizability of sets of natural numbers by automata: New proofs of Cobham's and Semenov's theorems.Christian Michaux & Roger Villemaire - 1996 - Annals of Pure and Applied Logic 77 (3):251-277.
    Let be the set of nonnegative integers. We show the two following facts about Presburger's arithmetic:1. 1. Let . If L is not definable in , + then there is an definable in , such that there is no bound on the distance between two consecutive elements of L′. and2. 2. is definable in , + if and only if every subset of which is definable in is definable in , +. These two Theorems are of independent interest but we (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • On the completeness of a certain system of arithmetic of whole numbers in which addition occurs as the only operation.Mojżesz Presburger & Dale Jabcquette - 1991 - History and Philosophy of Logic 12 (2):225-233.
    Presburger's essay on the completeness and decidability of arithmetic with integer addition but without multiplication is a milestone in the history of mathematical logic and formal metatheory. The proof is constructive, using Tarski-style quantifier elimination and a four-part recursive comprehension principle for axiomatic consequence characterization. Presburger's proof for the completeness of first order arithmetic with identity and addition but without multiplication, in light of the restrictive formal metatheorems of Gödel, Church, and Rosser, takes the foundations of arithmetic in mathematical logic (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Quasi-o-minimal structures.Oleg Belegradek, Ya'acov Peterzil & Frank Wagner - 2000 - Journal of Symbolic Logic 65 (3):1115-1132.
    A structure (M, $ ,...) is called quasi-o-minimal if in any structure elementarily equivalent to it the definable subsets are exactly the Boolean combinations of 0-definable subsets and intervals. We give a series of natural examples of quasi-o-minimal structures which are not o-minimal; one of them is the ordered group of integers. We develop a technique to investigate quasi-o-minimality and use it to study quasi-o-minimal ordered groups (possibly with extra structure). Main results: any quasi-o-minimal ordered group is abelian; any quasi-o-minimal (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • On variants of o-minimality.Dugald Macpherson & Charles Steinhorn - 1996 - Annals of Pure and Applied Logic 79 (2):165-209.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Essentially periodic ordered groups.Françoise Point & Frank O. Wagner - 2000 - Annals of Pure and Applied Logic 105 (1-3):261-291.
    A totally ordered group G is essentially periodic if for every definable non-trivial convex subgroup H of G every definable subset of G is equal to a finite union of cosets of subgroups of G on some interval containing an end segment of H; it is coset-minimal if all definable subsets are equal to a finite union of cosets, intersected with intervals. We study definable sets and functions in such groups, and relate them to the quasi-o-minimal groups introduced in Belegradek (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations