Switch to: Citations

Add references

You must login to add references.
  1. How epigenetic mutations can affect genetic evolution: Model and mechanism.Filippos D. Klironomos, Johannes Berg & Sinéad Collins - 2013 - Bioessays 35 (6):571-578.
    We hypothesize that heritable epigenetic changes can affect rates of fitness increase as well as patterns of genotypic and phenotypic change during adaptation. In particular, we suggest that when natural selection acts on pure epigenetic variation in addition to genetic variation, populations adapt faster, and adaptive phenotypes can arise before any genetic changes. This may make it difficult to reconcile the timing of adaptive events detected using conventional population genetics tools based on DNA sequence data with environmental drivers of adaptation, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The ends of a continuum: genetic and temperature-dependent sex determination in reptiles.Stephen D. Sarre, Arthur Georges & Alex Quinn - 2004 - Bioessays 26 (6):639-645.
    Two prevailing paradigms explain the diversity of sex-determining modes in reptiles. Many researchers, particularly those who study reptiles, consider genetic and environmental sex-determining mechanisms to be fundamentally different, and that one can be demonstrated experimentally to the exclusion of the other. Other researchers, principally those who take a broader taxonomic perspective, argue that no clear boundaries exist between them. Indeed, we argue that genetic and environmental sex determination in reptiles should be seen as a continuum of states represented by species (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Sex or no sex: Evolutionary adaptation occurs regardless.Michael F. Seidl & Bart P. H. J. Thomma - 2014 - Bioessays 36 (4):335-345.
    All species continuously evolve to adapt to changing environments. The genetic variation that fosters such adaptation is caused by a plethora of mechanisms, including meiotic recombination that generates novel allelic combinations in the progeny of two parental lineages. However, a considerable number of eukaryotic species, including many fungi, do not have an apparent sexual cycle and are consequently thought to be limited in their evolutionary potential. As such organisms are expected to have reduced capability to eliminate deleterious mutations, they are (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The evolution of the peculiarities of mammalian sex chromosomes: an epigenetic view.Eva Jablonka - 2004 - Bioessays 26 (12):1327-1332.
    In most discussions of the evolution of sex chromosomes, it is presumed that the morphological differences between the X and Y were initiated by genetic changes. An alternative possibility is that, in the early stages, a key role was played by epigenetic modifications of chromatin structure that did not depend directly on genetic changes. Such modifications could have resulted from spontaneous epimutations at a sex‐determining locus or, in mammals, from selection in females for the epigenetic silencing of imprinted regions of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations