Switch to: Citations

References in:

Scientific Models and Representation

In Steven French & Juha Saatsi (eds.), Continuum Companion to the Philosophy of Science. Continuum. pp. 120--137 (2011)

Add references

You must login to add references.
  1. How the laws of physics lie.Nancy Cartwright - 1983 - New York: Oxford University Press.
    In this sequence of philosophical essays about natural science, the author argues that fundamental explanatory laws, the deepest and most admired successes of modern physics, do not in fact describe regularities that exist in nature. Cartwright draws from many real-life examples to propound a novel distinction: that theoretical entities, and the complex and localized laws that describe them, can be interpreted realistically, but the simple unifying laws of basic theory cannot.
    Download  
     
    Export citation  
     
    Bookmark   1229 citations  
  • Laws and symmetry.Bas C. Van Fraassen - 1989 - New York: Oxford University Press.
    Metaphysicians speak of laws of nature in terms of necessity and universality; scientists, in terms of symmetry and invariance. In this book van Fraassen argues that no metaphysical account of laws can succeed. He analyzes and rejects the arguments that there are laws of nature, or that we must believe there are, and argues that we should disregard the idea of law as an adequate clue to science. After exploring what this means for general epistemology, the author develops the empiricist (...)
    Download  
     
    Export citation  
     
    Bookmark   857 citations  
  • Depth: An Account of Scientific Explanation.Michael Strevens - 2008 - Cambridge: Harvard University Press.
    Approaches to explanation -- Causal and explanatory relevance -- The kairetic account of /D making -- The kairetic account of explanation -- Extending the kairetic account -- Event explanation and causal claims -- Regularity explanation -- Abstraction in regularity explanation -- Approaches to probabilistic explanation -- Kairetic explanation of frequencies -- Kairetic explanation of single outcomes -- Looking outward -- Looking inward.
    Download  
     
    Export citation  
     
    Bookmark   513 citations  
  • The Dappled World: A Study of the Boundaries of Science.Nancy Cartwright - 1999 - New York, NY: Cambridge University Press.
    It is often supposed that the spectacular successes of our modern mathematical sciences support a lofty vision of a world completely ordered by one single elegant theory. In this book Nancy Cartwright argues to the contrary. When we draw our image of the world from the way modern science works - as empiricism teaches us we should - we end up with a world where some features are precisely ordered, others are given to rough regularity and still others behave in (...)
    Download  
     
    Export citation  
     
    Bookmark   571 citations  
  • The scientific image.C. Van Fraassen Bas - 1980 - New York: Oxford University Press.
    In this book van Fraassen develops an alternative to scientific realism by constructing and evaluating three mutually reinforcing theories.
    Download  
     
    Export citation  
     
    Bookmark   551 citations  
  • Models as Mediators: Perspectives on Natural and Social Science.Mary S. Morgan & Margaret Morrison (eds.) - 1999 - Cambridge University Press.
    Models as Mediators discusses the ways in which models function in modern science, particularly in the fields of physics and economics. Models play a variety of roles in the sciences: they are used in the development, exploration and application of theories and in measurement methods. They also provide instruments for using scientific concepts and principles to intervene in the world. The editors provide a framework which covers the construction and function of scientific models, and explore the ways in which they (...)
    Download  
     
    Export citation  
     
    Bookmark   435 citations  
  • Scientific Representation: Paradoxes of Perspective.Bas C. Van Fraassen - 2008 - Oxford, GB: Oxford University Press UK.
    Bas C. van Fraassen presents an original exploration of how we represent the world.
    Download  
     
    Export citation  
     
    Bookmark   298 citations  
  • (1 other version)The devil in the details: asymptotic reasoning in explanation, reduction, and emergence.Robert W. Batterman - 2002 - New York: Oxford University Press.
    Robert Batterman examines a form of scientific reasoning called asymptotic reasoning, arguing that it has important consequences for our understanding of the scientific process as a whole. He maintains that asymptotic reasoning is essential for explaining what physicists call universal behavior. With clarity and rigor, he simplifies complex questions about universal behavior, demonstrating a profound understanding of the underlying structures that ground them. This book introduces a valuable new method that is certain to fill explanatory gaps across disciplines.
    Download  
     
    Export citation  
     
    Bookmark   265 citations  
  • The Semantic Conception of Theories and Scientific Realism.Frederick Suppe - 1989 - University of Illinois Press.
    Frederick Suppe has come to enjoy a position of undisputed leadership in the post-positivistic philosophy of science.
    Download  
     
    Export citation  
     
    Bookmark   227 citations  
  • (1 other version)Laws and Symmetry.Bas C. Van Fraassen - 1989 - Revue Philosophique de la France Et de l'Etranger 182 (3):327-329.
    Download  
     
    Export citation  
     
    Bookmark   734 citations  
  • Galilean Idealization.Ernan McMullin - 1985 - Studies in History and Philosophy of Science Part A 16 (3):247.
    Download  
     
    Export citation  
     
    Bookmark   350 citations  
  • How models are used to represent reality.Ronald N. Giere - 2004 - Philosophy of Science 71 (5):742-752.
    Most recent philosophical thought about the scientific representation of the world has focused on dyadic relationships between language-like entities and the world, particularly the semantic relationships of reference and truth. Drawing inspiration from diverse sources, I argue that we should focus on the pragmatic activity of representing, so that the basic representational relationship has the form: Scientists use models to represent aspects of the world for specific purposes. Leaving aside the terms "law" and "theory," I distinguish principles, specific conditions, models, (...)
    Download  
     
    Export citation  
     
    Bookmark   345 citations  
  • Three Kinds of Idealization.Michael Weisberg - 2007 - Journal of Philosophy 104 (12):639-659.
    Philosophers of science increasingly recognize the importance of idealization: the intentional introduction of distortion into scientific theories. Yet this recognition has not yielded consensus about the nature of idealization. e literature of the past thirty years contains disparate characterizations and justifications, but little evidence of convergence towards a common position.
    Download  
     
    Export citation  
     
    Bookmark   298 citations  
  • Representation and Invariance of Scientific Structures.Patrick Suppes - 2002 - CSLI Publications (distributed by Chicago University Press).
    An early, very preliminary edition of this book was circulated in 1962 under the title Set-theoretical Structures in Science. There are many reasons for maintaining that such structures play a role in the philosophy of science. Perhaps the best is that they provide the right setting for investigating problems of representation and invariance in any systematic part of science, past or present. Examples are easy to cite. Sophisticated analysis of the nature of representation in perception is to be found already (...)
    Download  
     
    Export citation  
     
    Bookmark   156 citations  
  • Science and Partial Truth: A Unitary Approach to Models and Scientific Reasoning.Newton C. A. Da Costa & Steven French - 2003 - New York, US: Oup Usa.
    Da Costa and French explore the consequences of adopting a 'pragmatic' notion of truth in the philosophy of science. Their framework sheds new light on issues to do with belief, theory acceptance, and the realism-antirealism debate, as well as the nature of scientific models and their heuristic development.
    Download  
     
    Export citation  
     
    Bookmark   130 citations  
  • Models and representation.Richard Hughes - 1997 - Philosophy of Science 64 (4):336.
    A general account of modeling in physics is proposed. Modeling is shown to involve three components: denotation, demonstration, and interpretation. Elements of the physical world are denoted by elements of the model; the model possesses an internal dynamic that allows us to demonstrate theoretical conclusions; these in turn need to be interpreted if we are to make predictions. The DDI account can be readily extended in ways that correspond to different aspects of scientific practice.
    Download  
     
    Export citation  
     
    Bookmark   266 citations  
  • Scientific Representation: Paradoxes of Perspective.B. C. van Fraassen - 2010 - Analysis 70 (3):511-514.
    Download  
     
    Export citation  
     
    Bookmark   273 citations  
  • Scientific representation: Against similarity and isomorphism.Mauricio Suárez - 2003 - International Studies in the Philosophy of Science 17 (3):225-244.
    I argue against theories that attempt to reduce scientific representation to similarity or isomorphism. These reductive theories aim to radically naturalize the notion of representation, since they treat scientist's purposes and intentions as non-essential to representation. I distinguish between the means and the constituents of representation, and I argue that similarity and isomorphism are common but not universal means of representation. I then present four other arguments to show that similarity and isomorphism are not the constituents of scientific representation. I (...)
    Download  
     
    Export citation  
     
    Bookmark   267 citations  
  • Who is a Modeler?Michael Weisberg - 2007 - British Journal for the Philosophy of Science 58 (2):207-233.
    Many standard philosophical accounts of scientific practice fail to distinguish between modeling and other types of theory construction. This failure is unfortunate because there are important contrasts among the goals, procedures, and representations employed by modelers and other kinds of theorists. We can see some of these differences intuitively when we reflect on the methods of theorists such as Vito Volterra and Linus Pauling on the one hand, and Charles Darwin and Dimitri Mendeleev on the other. Much of Volterra's and (...)
    Download  
     
    Export citation  
     
    Bookmark   224 citations  
  • (1 other version)Models and fiction.Roman Frigg - 2007 - Synthese 172 (2):251-268.
    Most scientific models are not physical objects, and this raises important questions. What sort of entity are models, what is truth in a model, and how do we learn about models? In this paper I argue that models share important aspects in common with literary fiction, and that therefore theories of fiction can be brought to bear on these questions. In particular, I argue that the pretence theory as developed by Walton (1990, Mimesis as make-believe: on the foundations of the (...)
    Download  
     
    Export citation  
     
    Bookmark   192 citations  
  • An inferential conception of scientific representation.Mauricio Suárez - 2004 - Philosophy of Science 71 (5):767-779.
    This paper defends an inferential conception of scientific representation. It approaches the notion of representation in a deflationary spirit, and minimally characterizes the concept as it appears in science by means of two necessary conditions: its essential directionality and its capacity to allow surrogate reasoning and inference. The conception is defended by showing that it successfully meets the objections that make its competitors, such as isomorphism and similarity, untenable. In addition the inferential conception captures the objectivity of the cognitive representations (...)
    Download  
     
    Export citation  
     
    Bookmark   254 citations  
  • Explaining Science.Ronald Giere - 1991 - Noûs 25 (3):386-388.
    Download  
     
    Export citation  
     
    Bookmark   294 citations  
  • Structural representation and surrogative reasoning.Chris Swoyer - 1991 - Synthese 87 (3):449 - 508.
    It is argued that a number of important, and seemingly disparate, types of representation are species of a single relation, here called structural representation, that can be described in detail and studied in a way that is of considerable philosophical interest. A structural representation depends on the existence of a common structure between a representation and that which it represents, and it is important because it allows us to reason directly about the representation in order to draw conclusions about the (...)
    Download  
     
    Export citation  
     
    Bookmark   215 citations  
  • Models and fictions in science.Peter Godfrey-Smith - 2009 - Philosophical Studies 143 (1):101 - 116.
    Non-actual model systems discussed in scientific theories are compared to fictions in literature. This comparison may help with the understanding of similarity relations between models and real-world target systems. The ontological problems surrounding fictions in science may be particularly difficult, however. A comparison is also made to ontological problems that arise in the philosophy of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   150 citations  
  • A comparison of the meaning and uses of models in mathematics and the empirical sciences.Patrick Suppes - 1960 - Synthese 12 (2-3):287--301.
    Download  
     
    Export citation  
     
    Bookmark   217 citations  
  • On the explanatory role of mathematics in empirical science.Robert W. Batterman - 2010 - British Journal for the Philosophy of Science 61 (1):1-25.
    This paper examines contemporary attempts to explicate the explanatory role of mathematics in the physical sciences. Most such approaches involve developing so-called mapping accounts of the relationships between the physical world and mathematical structures. The paper argues that the use of idealizations in physical theorizing poses serious difficulties for such mapping accounts. A new approach to the applicability of mathematics is proposed.
    Download  
     
    Export citation  
     
    Bookmark   129 citations  
  • Twilight of the perfect model model.Paul Teller - 2001 - Erkenntnis 55 (3):393-415.
    Download  
     
    Export citation  
     
    Bookmark   197 citations  
  • Scientific representation, interpretation, and surrogative reasoning.Gabriele Contessa - 2007 - Philosophy of Science 74 (1):48-68.
    In this paper, I develop Mauricio Suárez’s distinction between denotation, epistemic representation, and faithful epistemic representation. I then outline an interpretational account of epistemic representation, according to which a vehicle represents a target for a certain user if and only if the user adopts an interpretation of the vehicle in terms of the target, which would allow them to perform valid (but not necessarily sound) surrogative inferences from the model to the system. The main difference between the interpretational conception I (...)
    Download  
     
    Export citation  
     
    Bookmark   113 citations  
  • (2 other versions)Scientific representation and the semantic view of theories.Roman Frigg - 2006 - Theoria 21 (1):49-65.
    It is now part and parcel of the official philosophical wisdom that models are essential to the acquisition and organisation of scientific knowledge. It is also generally accepted that most models represent their target systems in one way or another. But what does it mean for a model to represent its target system? I begin by introducing three conundrums that a theory of scientific representation has to come to terms with and then address the question of whether the semantic view (...)
    Download  
     
    Export citation  
     
    Bookmark   140 citations  
  • Reinflating the semantic approach.Steven French & James Ladyman - 1999 - International Studies in the Philosophy of Science 13 (2):103 – 121.
    The semantic, or model-theoretic, approach to theories has recently come under criticism on two fronts: (i) it is claimed that it cannot account for the wide diversity of models employed in scientific practice—a claim which has led some to propose a “deflationary” account of models; (ii) it is further contended that the sense of “model” used by the approach differs from that given in model theory. Our aim in the present work is to articulate a possible response to these claims, (...)
    Download  
     
    Export citation  
     
    Bookmark   146 citations  
  • Empirical adequacy: A partial structures approach.Otávio Bueno - 1997 - Studies in History and Philosophy of Science Part A 28 (4):585-610.
    Based on da Costa's and French's notions of partial structures and pragmatic truth, this paper examines two possible characterizations of the concept of empirical adequacy, one depending on the notion of partial isomorphism, the other on the hierarchy of partial models of phenomena, and both compatible with an empiricist view. These formulations can then be employed to illuminate certain aspects of scientific practice.An empirical theory must single out a specific part of the world, establish reference to that part, and say—by (...)
    Download  
     
    Export citation  
     
    Bookmark   83 citations  
  • When scientific models represent.Daniela M. Bailer-Jones - 2003 - International Studies in the Philosophy of Science 17 (1):59 – 74.
    Scientific models represent aspects of the empirical world. I explore to what extent this representational relationship, given the specific properties of models, can be analysed in terms of propositions to which truth or falsity can be attributed. For example, models frequently entail false propositions despite the fact that they are intended to say something "truthful" about phenomena. I argue that the representational relationship is constituted by model users "agreeing" on the function of a model, on the fit with data and (...)
    Download  
     
    Export citation  
     
    Bookmark   81 citations  
  • The Model-Theoretic Approach in the Philosophy of Science.Newton C. A. Da Costa & Steven French - 1990 - Philosophy of Science 57 (2):248 - 265.
    An introduction to the model-theoretic approach in the philosophy of science is given and it is argued that this program is further enhanced by the introduction of partial structures. It is then shown that this leads to a natural and intuitive account of both "iconic" and mathematical models and of the role of the former in science itself.
    Download  
     
    Export citation  
     
    Bookmark   87 citations  
  • On representing the relationship between the mathematical and the empirical.Otávio Bueno, Steven French & James Ladyman - 2002 - Philosophy of Science 69 (3):497-518.
    We examine, from the partial structures perspective, two forms of applicability of mathematics: at the “bottom” level, the applicability of theoretical structures to the “appearances”, and at the “top” level, the applicability of mathematical to physical theories. We argue that, to accommodate these two forms of applicability, the partial structures approach needs to be extended to include a notion of “partial homomorphism”. As a case study, we present London's analysis of the superfluid behavior of liquid helium in terms of Bose‐Einstein (...)
    Download  
     
    Export citation  
     
    Bookmark   82 citations  
  • (2 other versions)Unifying Scientific Theories.Margaret Morrison - 2001 - Mind 110 (440):1097-1102.
    Download  
     
    Export citation  
     
    Bookmark   83 citations  
  • The Semantic or Model-Theoretic View of Theories and Scientific Realism.Anjan Chakravartty - 2001 - Synthese 127 (3):325-345.
    The semantic view of theoriesis one according to which theoriesare construed as models of their linguisticformulations. The implications of thisview for scientific realism have been little discussed. Contraryto the suggestion of various champions of the semantic view,it is argued that this approach does not makesupport for a plausible scientific realism anyless problematic than it might otherwise be.Though a degree of independence of theory fromlanguage may ensure safety frompitfalls associated with logical empiricism, realism cannot be entertained unless models or (abstractedand/or idealized) (...)
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  • Informational versus functional theories of scientific representation.Anjan Chakravartty - 2010 - Synthese 172 (2):197-213.
    Recent work in the philosophy of science has generated an apparent conflict between theories attempting to explicate the nature of scientific representation. On one side, there are what one might call 'informational' views, which emphasize objective relations (such as similarity, isomorphism, and homomorphism) between representations (theories, models, simulations, diagrams, etc.) and their target systems. On the other side, there are what one might call 'functional' views, which emphasize cognitive activities performed in connection with these targets, such as interpretation and inference. (...)
    Download  
     
    Export citation  
     
    Bookmark   54 citations  
  • Scientific models and fictional objects.Gabriele Contessa - 2010 - Synthese 172 (2):215-229.
    In this paper, I distinguish scientific models in three kinds on the basis of their ontological status—material models, mathematical models and fictional models, and develop and defend an account of fictional models as fictional objects—i.e. abstract objects that stand for possible concrete objects.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Where have all the theories gone?Margaret Morrison - 2007 - Philosophy of Science 74 (2):195-228.
    Although the recent emphasis on models in philosophy of science has been an important development, the consequence has been a shift away from more traditional notions of theory. Because the semantic view defines theories as families of models and because much of the literature on “scientific” modeling has emphasized various degrees of independence from theory, little attention has been paid to the role that theory has in articulating scientific knowledge. This paper is the beginning of what I hope will be (...)
    Download  
     
    Export citation  
     
    Bookmark   69 citations  
  • (2 other versions)Defending the structural concept of representation.Andreas Bartels - 2006 - Theoria 21 (55):7-19.
    The aim of this paper is to defend the structural concept of representation, as defined by homomorphisms, against its main objections, namely: logical objections, the objection from misrepresentation, theobjection from failing necessity, and the copy theory objection. The logical objections can be met by reserving the relation.
    Download  
     
    Export citation  
     
    Bookmark   54 citations  
  • (2 other versions)Defending the Structural Concept of Representation.Andreas Bartels - 2006 - Theoria: Revista de Teoría, Historia y Fundamentos de la Ciencia 21 (1):7-19.
    The aim of this paper is to defend the structural concept of representation, as defined by homomorphisms, against its main objections, namely: logical objections, the objection from misrepresentation, theobjection from failing necessity, and the copy theory objection. The logical objections can be met by reserving the relation ‘to be homomorphic to’ for the explication of potential representation (or, of the representational content). Actual reference objects (‘targets’) of representations are determined by (intentional or causal) representational mechanisms. Appealing to the independence of (...)
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • Realism about Structure: The Semantic View and Nonlinguistic Representations.Steven French & Juha Saatsi - 2006 - Philosophy of Science 73 (5):548-559.
    The central concern of this article is whether the semantic approach has the resources to appropriately capture the core tenets of structural realism. Chakravartty (2001) has argued that a realist notion of correspondence cannot be accommodated without introducing a linguistic component, which undermines the approach itself. We suggest that this worry can be addressed by an appropriate understanding of the role of language in this context. The real challenge, however, is how to incorporate the core notion of `explanatory approximate truth' (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Shared structure need not be shared set-structure.Elaine Landry - 2007 - Synthese 158 (1):1 - 17.
    Recent semantic approaches to scientific structuralism, aiming to make precise the concept of shared structure between models, formally frame a model as a type of set-structure. This framework is then used to provide a semantic account of (a) the structure of a scientific theory, (b) the applicability of a mathematical theory to a physical theory, and (c) the structural realist’s appeal to the structural continuity between successive physical theories. In this paper, I challenge the idea that, to be so used, (...)
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Perspectival models and theory unification.Alexander Rueger - 2005 - British Journal for the Philosophy of Science 56 (3):579-594.
    Given that scientific realism is based on the assumption that there is a connection between a model's predictive success and its truth, and given the success of multiple incompatible models in scientific practice, the realist has a problem. When the different models can be shown to arise as different approximations to a unified theory, however, one might think the realist to be able to accommodate such cases. I discuss a special class of models and argue that a realist interpretation has (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Modelling nature: Between physics and the physical world.Margaret C. Morrison - 1998 - Philosophia Naturalis 35 (1):65-85.
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Explaining Science: A Cognitive Approach. [REVIEW]Jeffrey S. Poland - 1988 - Philosophical Review 100 (4):653-656.
    Download  
     
    Export citation  
     
    Bookmark   684 citations  
  • (1 other version)The Pragmatics of Scientific Representation.Mauricio Suárez - manuscript
    This paper is divided in two parts. In part I, I argue against two attempts to naturalise the notion of scientific representation, by reducing it to isomorphism and similarity. I distinguish between the means and the constituents of representation, and I argue that isomorphism and similarity are common means of representation; but that they are not constituents of scientific representation. I look at the prospects for weakened versions of these theories, and I argue that only those that abandon the aim (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The pragmatics of scientific representation.Mauricio Suárez - 2002 - Centre for Philosophy of Natural and Social Science.
    This paper is divided in two parts. In part I, I argue against two attempts to naturalise the notion of scientific representation, by reducing it to isomorphism and similarity. I distinguish between the means and the constituents of representation, and I argue that isomorphism and similarity are common (although not universal) means of representation; but that they are not constituents of scientific representation. I look at the prospects for weakened versions of these theories, and I argue that only those that (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)The Pragmatics of Scientific Representation.Mauricio Suárez - 2002 - Discussion Paper (DP 66/02).
    This paper is divided in two parts. In part I, I argue against two attempts to naturalise the notion of scientific representation, by reducing it to isomorphism and similarity. I distinguish between the means and the constituents of representation, and I argue that isomorphism and similarity are common means of representation; but that they are not constituents of scientific representation. I look at the prospects for weakened versions of these theories, and I argue that only those that abandon the aim (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations