Switch to: References

Add citations

You must login to add citations.
  1. (3 other versions)Models and representation.Roman Frigg & James Nguyen - 2017 - In Lorenzo Magnani & Tommaso Bertolotti (eds.), Springer Handbook of Model-Based Science. Springer. pp. 49-102.
    Scientific discourse is rife with passages that appear to be ordinary descriptions of systems of interest in a particular discipline. Equally, the pages of textbooks and journals are filled with discussions of the properties and the behavior of those systems. Students of mechanics investigate at length the dynamical properties of a system consisting of two or three spinning spheres with homogenous mass distributions gravitationally interacting only with each other. Population biologists study the evolution of one species procreating at a constant (...)
    Download  
     
    Export citation  
     
    Bookmark   54 citations  
  • Scientific representation.Roman Frigg & James Nguyen - 2016 - Stanford Encyclopedia of Philosophy.
    Science provides us with representations of atoms, elementary particles, polymers, populations, genetic trees, economies, rational decisions, aeroplanes, earthquakes, forest fires, irrigation systems, and the world’s climate. It's through these representations that we learn about the world. This entry explores various different accounts of scientific representation, with a particular focus on how scientific models represent their target systems. As philosophers of science are increasingly acknowledging the importance, if not the primacy, of scientific models as representational units of science, it's important to (...)
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • The fiction view of models reloaded.Roman Frigg & James Nguyen - 2016 - The Monist 99 (3):225-242.
    In this paper we explore the constraints that our preferred account of scientific representation places on the ontology of scientific models. Pace the Direct Representation view associated with Arnon Levy and Adam Toon we argue that scientific models should be thought of as imagined systems, and clarify the relationship between imagination and representation.
    Download  
     
    Export citation  
     
    Bookmark   67 citations  
  • (1 other version)Models and fiction.Roman Frigg - 2007 - Synthese 172 (2):251-268.
    Most scientific models are not physical objects, and this raises important questions. What sort of entity are models, what is truth in a model, and how do we learn about models? In this paper I argue that models share important aspects in common with literary fiction, and that therefore theories of fiction can be brought to bear on these questions. In particular, I argue that the pretence theory as developed by Walton (1990, Mimesis as make-believe: on the foundations of the (...)
    Download  
     
    Export citation  
     
    Bookmark   191 citations  
  • Holistic modeling: an objection to Weisberg’s weighted feature-matching account.Wei Fang - 2017 - Synthese 194 (5):1743–1764.
    Michael Weisberg’s account of scientific models concentrates on the ways in which models are similar to their targets. He intends not merely to explain what similarity consists in, but also to capture similarity judgments made by scientists. In order to scrutinize whether his account fulfills this goal, I outline one common way in which scientists judge whether a model is similar enough to its target, namely maximum likelihood estimation method. Then I consider whether Weisberg’s account could capture the judgments involved (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Mathematical formalisms in scientific practice: From denotation to model-based representation.Axel Gelfert - 2011 - Studies in History and Philosophy of Science Part A 42 (2):272-286.
    The present paper argues that ‘mature mathematical formalisms’ play a central role in achieving representation via scientific models. A close discussion of two contemporary accounts of how mathematical models apply—the DDI account (according to which representation depends on the successful interplay of denotation, demonstration and interpretation) and the ‘matching model’ account—reveals shortcomings of each, which, it is argued, suggests that scientific representation may be ineliminably heterogeneous in character. In order to achieve a degree of unification that is compatible with successful (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Robustness, Diversity of Evidence, and Probabilistic Independence.Jonah N. Schupbach - 2015 - In Uskali Mäki, Stéphanie Ruphy, Gerhard Schurz & Ioannis Votsis (eds.), Recent Developments in the Philosophy of Science. Cham: Springer. pp. 305-316.
    In robustness analysis, hypotheses are supported to the extent that a result proves robust, and a result is robust to the extent that we detect it in diverse ways. But what precise sense of diversity is at work here? In this paper, I show that the formal explications of evidential diversity most often appealed to in work on robustness – which all draw in one way or another on probabilistic independence – fail to shed light on the notion of diversity (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Explaining simulated phenomena. A defense of the epistemic power of computer simulations.Juan M. Durán - 2013 - Dissertation, University of Stuttgart
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Representation and Similarity: Suárez on Necessary and Sufficient Conditions of Scientific Representation.Michael Poznic - 2016 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 47 (2):331-347.
    The notion of scientific representation plays a central role in current debates on modeling in the sciences. One or maybe the major epistemic virtue of successful models is their capacity to adequately represent specific phenomena or target systems. According to similarity views of scientific representation, models should be similar to their corresponding targets in order to represent them. In this paper, Suárez’s arguments against similarity views of representation will be scrutinized. The upshot is that the intuition that scientific representation involves (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Are We Sims? How Computer Simulations Represent and What this Means for the Simulation Argument.Claus Beisbart - 2014 - The Monist 97 (3):399-417.
    N. Bostrom’s simulation argument and two additional assumptions imply that we likely live in a computer simulation. The argument is based upon the following assumption about the workings of realistic brain simulations: The hardware of a computer on which a brain simulation is run bears a close analogy to the brain itself. To inquire whether this is so, I analyze how computer simulations trace processes in their targets. I describe simulations as fictional, mathematical, pictorial, and material models. Even though the (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Mechanisms meet structural explanation.Laura Felline - 2018 - Synthese 195 (1):99-114.
    This paper investigates the relationship between structural explanation and the New Mechanistic account of explanation. The aim of this paper is twofold: firstly, to argue that some phenomena in the domain of fundamental physics, although mechanically brute, are structurally explained; and secondly, by elaborating on the contrast between SE and mechanistic explanation to better clarify some features of SE. Finally, this paper will argue that, notwithstanding their apparently antithetical character, SE and ME can be reconciled within a unified account of (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Outline of a dynamical inferential conception of the application of mathematics.Tim Räz & Tilman Sauer - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 49:57-72.
    We outline a framework for analyzing episodes from the history of science in which the application of mathematics plays a constitutive role in the conceptual development of empirical sciences. Our starting point is the inferential conception of the application of mathematics, recently advanced by Bueno and Colyvan. We identify and discuss some systematic problems of this approach. We propose refinements of the inferential conception based on theoretical considerations and on the basis of a historical case study. We demonstrate the usefulness (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Layers of Models in Computer Simulations.Thomas Boyer-Kassem - 2014 - International Studies in the Philosophy of Science 28 (4):417-436.
    I discuss here the definition of computer simulations, and more specifically the views of Humphreys, who considers that an object is simulated when a computer provides a solution to a computational model, which in turn represents the object of interest. I argue that Humphreys's concepts are not able to analyse fully successfully a case of contemporary simulation in physics, which is more complex than the examples considered so far in the philosophical literature. I therefore modify Humphreys's definition of simulation. I (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • International Handbook of Research in History, Philosophy and Science Teaching.Michael R. Matthews (ed.) - 2014 - Springer.
    This inaugural handbook documents the distinctive research field that utilizes history and philosophy in investigation of theoretical, curricular and pedagogical issues in the teaching of science and mathematics. It is contributed to by 130 researchers from 30 countries; it provides a logically structured, fully referenced guide to the ways in which science and mathematics education is, informed by the history and philosophy of these disciplines, as well as by the philosophy of education more generally. The first handbook to cover the (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Dynamical versus structural explanations in scientific revolutions.Mauro Dorato - 2017 - Synthese 194 (7):2307-2327.
    By briefly reviewing three well-known scientific revolutions in fundamental physics (the discovery of inertia, of special relativity and of general relativity), I claim that problems that were supposed to be crying for a dynamical explanation in the old paradigm ended up receiving a structural explanation in the new one. This claim is meant to give more substance to Kuhn’s view that revolutions are accompanied by a shift in what needs to be explained, while suggesting at the same time the existence (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Theories, models and structures: Thirty years on.S. R. D. French & N. da Costa - 2000 - Philosophy of Science 67 (Supple):S116 - S127.
    Thirty years after the conference that gave rise to The Structure of Scientific Theories, there is renewed interest in the nature of theories and models. However, certain crucial issues from thirty years ago are reprised in current discussions; specifically: whether the diversity of models in the science can be captured by some unitary account; and whether the temporal dimension of scientific practice can be represented by such an account. After reviewing recent developments we suggest that these issues can be accommodated (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Scientific fictions as rules of inference.Mauricio Suárez - 2008 - In Mauricio Suárez (ed.), Fictions in Science: Philosophical Essays on Modeling and Idealization. New York: Routledge. pp. 158--178.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • The Uses of Analogies in Seventeenth and Eighteenth Century Science.Yves Gingras & Alexandre Guay - 2011 - Perspectives on Science 19 (2):154-191.
    The object of this paper is to look at the extent and nature of the uses of analogy during the ªrst century following the so-called scientiªc revolution. Using the research tool provided by JSTOR we systematically analyze the uses of “analog” and its cognates (analogies, analogous, etc.) in the Philosophical Transactions of the Royal Society of London for the period 1665–1780. In addition to giving the possibility of evaluating quantitatively the proportion of papers explicitly using analogies, this approach makes it (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Beyond the antinomies of structure: Levi-Strauss, Giddens, Bourdieu, and Sewell. [REVIEW]Omar Lizardo - 2010 - Theory and Society 39 (6):651-688.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Pluralism in evolutionary controversies: styles and averaging strategies in hierarchical selection theories.Rasmus Grønfeldt Winther, Michael J. Wade & Christopher C. Dimond - 2013 - Biology and Philosophy 28 (6):957-979.
    Two controversies exist regarding the appropriate characterization of hierarchical and adaptive evolution in natural populations. In biology, there is the Wright-Fisher controversy over the relative roles of random genetic drift, natural selection, population structure, and interdemic selection in adaptive evolution begun by Sewall Wright and Ronald Aylmer Fisher. There is also the Units of Selection debate, spanning both the biological and the philosophical literature and including the impassioned group-selection debate. Why do these two discourses exist separately, and interact relatively little? (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Similarity and Scientific Representation.Adam Toon - 2012 - International Studies in the Philosophy of Science 26 (3):241-257.
    The similarity view of scientific representation has recently been subjected to strong criticism. Much of this criticism has been directed against a ?naive? similarity account, which tries to explain representation solely in terms of similarity between scientific models and the world. This article examines the more sophisticated account offered by the similarity view's leading proponent, Ronald Giere. In contrast to the naive account, Giere's account appeals to the role played by the scientists using a scientific model. A similar move is (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Models, Sherlock Holmes and the Emperor Claudius.Adam Toon - manuscript
    Recently, a number of authors have suggested that we understand scientific models in the same way as fictional characters, like Sherlock Holmes. The biggest challenge for this approach concerns the ontology of fictional characters. I consider two responses to this challenge, given by Roman Frigg, Ronald Giere and Peter Godfrey-Smith, and argue that neither is successful. I then suggest an alternative approach. While parallels with fiction are useful, I argue that models of real systems are more aptly compared to works (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Models as interpreters.Chuanfei Chin - 2011 - Studies in History and Philosophy of Science Part A 42 (2):303-312.
    Most philosophical accounts of scientific models assume that models represent some aspect, or some theory, of reality. They also assume that interpretation plays only a supporting role. This paper challenges both assumptions. It proposes that models can be used in science to interpret reality. (a) I distinguish these interpretative models from representational ones. They find new meanings in a target system’s behaviour, rather than fit its parts together. They are built through idealisation, abstraction and recontextualisation. (b) To show how interpretative (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • How Theories Represent.Otávio Bueno & Steven French - 2011 - British Journal for the Philosophy of Science 62 (4):857-894.
    An account of scientific representation in terms of partial structures and partial morphisms is further developed. It is argued that the account addresses a variety of difficulties and challenges that have recently been raised against such formal accounts of representation. This allows some useful parallels between representation in science and art to be drawn, particularly with regard to apparently inconsistent representations. These parallels suggest that a unitary account of scientific and artistic representation is possible, and our article can be viewed (...)
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  • Scientific Theories of Computational Systems in Model Checking.Nicola Angius & Guglielmo Tamburrini - 2011 - Minds and Machines 21 (2):323-336.
    Model checking, a prominent formal method used to predict and explain the behaviour of software and hardware systems, is examined on the basis of reflective work in the philosophy of science concerning the ontology of scientific theories and model-based reasoning. The empirical theories of computational systems that model checking techniques enable one to build are identified, in the light of the semantic conception of scientific theories, with families of models that are interconnected by simulation relations. And the mappings between these (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • A literary approach to scientific practice: R. I. G. Hughes: The theoretical practices of physics: Philosophical essays. Oxford: Oxford University Press, 2010, 289pp, £35.00, $ 75.00 HB.Seamus Bradley - 2010 - Metascience 20 (2):363--367.
    A literary approach to scientific practice: Essay Review of R.I.G. Hughes' _The Theoretical Practices of Physics_.
    Download  
     
    Export citation  
     
    Bookmark  
  • An Inferential Response to the "Loss of Reality Objection" to Structural Empiricism.Franco Menares Paredes - 2022 - Principia: An International Journal of Epistemology 26 (3):539–558.
    This paper aims to meet an objection that has been raised against structural empiricism known as the “loss of reality objection.” I argue that an inferential approach to scientific representation allows the structural empiricist to account for the representation of phenomena by data models and ensures that such a representation is not arbitrary. By the notions of immersion, derivation, and interpretation, I show how data models are able to represent phenomena in a non-arbitrary manner. I conclude this paper with a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Representation at the Nanoscale.Otávio Bueno - 2006 - Philosophy of Science 73 (5):617-628.
    In this paper, I provide an account of scientific representation that makes sense of the notion both at the nanoscale and at the quantum level: the partial mappings account. The account offers an extension of a proposal developed by R. I. G. Hughes in terms of denotation, demonstration, and interpretation (DDI). I first argue that the DDI account needs some amendments to accommodate representation of nano and quantum phenomena. I then introduce a generalized framework with the notions of unsharp denotation, (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Entropy - A Guide for the Perplexed.Roman Frigg & Charlotte Werndl - 2011 - In Claus Beisbart & Stephan Hartmann (eds.), Probabilities in Physics. Oxford, GB: Oxford University Press. pp. 115-142.
    Entropy is ubiquitous in physics, and it plays important roles in numerous other disciplines ranging from logic and statistics to biology and economics. However, a closer look reveals a complicated picture: entropy is defined differently in different contexts, and even within the same domain different notions of entropy are at work. Some of these are defined in terms of probabilities, others are not. The aim of this chapter is to arrive at an understanding of some of the most important notions (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Scientific Explanation between Principle and Constructive Theories.Laura Felline - 2011 - Philosophy of Science 78 (5):989-1000.
    The aim of this paper is to analyse the role that the distinction between principle and constructive theories have in the question of the explanatory power of Special Relativity. We show how the distinction breaks down at the explanatory level. We assess Harvey Brown’s (2005) claim that, as a principle theory, Special Relativity lacks of explanatory power and criticize it, as, we argue, based upon an unrealistic picture of the kind of explanations provided by principle (and constructive) theories. Finally, we (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • (1 other version)Scientific representation.Mauricio Suárez - 2010 - Philosophy Compass 5 (1):91-101.
    Scientific representation is a currently booming topic, both in analytical philosophy and in history and philosophy of science. The analytical inquiry attempts to come to terms with the relation between theory and world; while historians and philosophers of science aim to develop an account of the practice of model building in the sciences. This article provides a review of recent work within both traditions, and ultimately argues for a practice-based account of the means employed by scientists to effectively achieve representation (...)
    Download  
     
    Export citation  
     
    Bookmark   91 citations  
  • Scientific Models and Representation.Gabriele Contessa - 2011 - In Steven French & Juha Saatsi (eds.), Continuum Companion to the Philosophy of Science. Continuum. pp. 120--137.
    My two daughters would love to go tobogganing down the hill by themselves, but they are just toddlers and I am an apprehensive parent, so, before letting them do so, I want to ensure that the toboggan won’t go too fast. But how fast will it go? One way to try to answer this question would be to tackle the problem head on. Since my daughters and their toboggan are initially at rest, according to classical mechanics, their final velocity will (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • (1 other version)To Save the Semantic View: An Argument for Returning to Suppes' Interpretation.Thomas Cunningham - 2008
    Recent work on the semantic view of scientific theories is highly critical of the position. This paper identifies two common criticisms of the view, describes two popular alternatives for responding to them, and argues those responses do not suffice. Subsequently, it argues that retuning to Patrick Suppes’ interpretation of the position provides the conceptual resources for rehabilitating the semantic view.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Models, Pictures, and Unified Accounts of Representation: Lessons from Aesthetics for Philosophy of Science.Stephen M. Downes - 2009 - Perspectives on Science 17 (4):417-428.
    Several prominent philosophers of science, most notably Ron Giere, propose that scientific theories are collections of models and that models represent the objects of scientific study. Some, including Giere, argue that models represent in the same way that pictures represent. Aestheticians have brought the picturing relation under intense scrutiny and presented important arguments against the tenability of particular accounts of picturing. Many of these arguments from aesthetics can be used against accounts of representation in philosophy of science. I rely on (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Models as make-believe.Adam Toon - 2008 - In Roman Frigg & Matthew Hunter (eds.), Beyond Mimesis and Convention: Representation in Art and Science. Boston Studies in Philosophy of Science.
    In this paper I propose an account of representation for scientific models based on Kendall Walton’s ‘make-believe’ theory of representation in art. I first set out the problem of scientific representation and respond to a recent argument due to Craig Callender and Jonathan Cohen, which aims to show that the problem may be easily dismissed. I then introduce my account of models as props in games of make-believe and show how it offers a solution to the problem. Finally, I demonstrate (...)
    Download  
     
    Export citation  
     
    Bookmark   54 citations  
  • (1 other version)A Model‐Theoretic Account of Representation.Steven French - 2003 - Philosophy of Science 70 (5):1472-1483.
    Recent discussions of the nature of representation in science have tended to import pre-established decompositions from analyses of representation in the arts, language, cognition and so forth. Which of these analyses one favours will depend on how one conceives of theories in the first place. If one thinks of them in terms of an axiomatised set of logico-linguistic statements, then one might be naturally drawn to accounts of linguistic representation in which notions of denotation, for example, feature prominently. If, on (...)
    Download  
     
    Export citation  
     
    Bookmark   91 citations  
  • (1 other version)A model‐theoretic account of representation (or, I don't know much about art…but I know it involves isomorphism).Steven French - 2003 - Philosophy of Science 70 (5):1472-1483.
    Discussions of representation in science tend to draw on examples from art. However, such examples need to be handled with care given a) the differences between works of art and scientific theories and b) the accommodation of these examples within certain philosophies of art. I shall examine the claim that isomorphism is neither necessary nor sufficient for representation and I shall argue that there exist accounts of representation in both art and science involving isomorphism which accommodate the apparent counterexamples and, (...)
    Download  
     
    Export citation  
     
    Bookmark   75 citations  
  • Scientific representation, interpretation, and surrogative reasoning.Gabriele Contessa - 2007 - Philosophy of Science 74 (1):48-68.
    In this paper, I develop Mauricio Suárez’s distinction between denotation, epistemic representation, and faithful epistemic representation. I then outline an interpretational account of epistemic representation, according to which a vehicle represents a target for a certain user if and only if the user adopts an interpretation of the vehicle in terms of the target, which would allow them to perform valid (but not necessarily sound) surrogative inferences from the model to the system. The main difference between the interpretational conception I (...)
    Download  
     
    Export citation  
     
    Bookmark   112 citations  
  • Scientists' thoughts on scientific models.Daniela M. Bailer-Jones - 2002 - Perspectives on Science 10 (3):275-301.
    : This paper contains the analysis of nine interviews with UK scientists on the topic of scientific models. Scientific models are an important, very controversially discussed topic in philosophy of science. A reasonable expectation is that philosophical conceptions of models ought to be in agreement with scientific practice. Questioning practicing scientists on their use of and views on models provides material against which philosophical positions can be measured.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • (3 other versions)Defending the structural concept of representation.Andreas Bartels - 2006 - Theoria 21 (55):7-19.
    The aim of this paper is to defend the structural concept of representation, as defined by homomorphisms, against its main objections, namely: logical objections, the objection from misrepresentation, theobjection from failing necessity, and the copy theory objection. The logical objections can be met by reserving the relation.
    Download  
     
    Export citation  
     
    Bookmark   54 citations  
  • Peirce’s Pragmatism, Semiotics, and Physical Representation.Carmen Suárez Sánchez-Ovcharov - 2024 - European Journal of Pragmatism and American Philosophy 16 (1).
    Charles Peirce is widely credited as the originator of semiotics, or the general theory of signs, and recognized as the founder of American pragmatism, albeit in that peculiar kind Peirce himself went on to distinguish as “pragmaticism.” The semiotic and pragmatist strands in Peirce’s thought come together in an appraisal of scientific diagrammatic representations. Peirce’s pragmatic maxim entails that the consequences of a sign inform our entire conception of the sign, while his most considered semiotic system entails that a complex (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Sparks of New Metaphysics and the Limits of Explanatory Abstractions.Thomas Hauer - 2024 - Metaphysica 25 (1):15-39.
    Physical reality as an explanatory model is an abstraction of the mind. Every perceptual system is a user interface, like the dashboard of an aeroplane or the desktop of a computer. We do not see or otherwise perceive reality but only interface with reality. The user interface concept is a starting point for a critical dialogue with those epistemic theories that present themselves as veridical and take explanatory abstractions as ontological primitives. At the heart of any scientific model are assumptions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Valeurs Dans la Representation Scientifique.Quentin Ruyant - 2023 - Lato Sensu: Revue de la Société de Philosophie des Sciences 10 (1):24-38.
    Le but de cet article est d'examiner le rôle joué par les valeurs dans les activités de représentation en science, notamment la construction ou utilisation de modèles, en distinguant représentation concrète et abstraite. Un modèle hiérarchique est proposé. La conclusion est que l'influence des valeurs sociales dans la représentation scientifique dépend du niveau d'abstraction considéré, et qu'elle n'est problématique que quand des valeurs locales sont considérées pour évaluer des représentations plus générales.
    Download  
     
    Export citation  
     
    Bookmark  
  • Model Organisms as Scientific Representations.Lorenzo Sartori - forthcoming - British Journal for the Philosophy of Science.
    Download  
     
    Export citation  
     
    Bookmark  
  • Rules to Infinity: The Normative Role of Mathematics in Scientific Explanation.Mark Povich - 2024 - Oxford University Press USA.
    One central aim of science is to provide explanations of natural phenomena. What role(s) does mathematics play in achieving this aim? How does mathematics contribute to the explanatory power of science? Rules to Infinity defends the thesis, common though perhaps inchoate among many members of the Vienna Circle, that mathematics contributes to the explanatory power of science by expressing conceptual rules, rules which allow the transformation of empirical descriptions. Mathematics should not be thought of as describing, in any substantive sense, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Epistemic expression in the determination of biomolecular structure.Agnes Bolinska - 2023 - Studies in History and Philosophy of Science Part A 100 (C):107-115.
    Scientific research is constrained by limited resources, so it is imperative that it be conducted efficiently. This paper introduces the notion of epistemic expression, a kind of representation that expedites the solution of research problems. Epistemic expressions are representations that (i) contain information in a way that enables more reliable information to place the most stringent constraints on possible solutions and (ii) make new information readily extractible by biasing the search through that space. I illustrate these conditions using historical and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Consistent histories through pragmatist lenses.Quentin Ruyant - 2023 - Studies in History and Philosophy of Science Part A 98 (C):40-48.
    This article adopts a bottom-up approach to theory interpretation, following the slogan “meaning is use”, and applies it to quantum mechanics. I argue that it fits very well with the Consistent Histories formulation of quantum mechanics, interpreted in a particular way that is not the interpretation favoured by original proponents of the formulation. I examine the difficulties and advantages of this interpretation.
    Download  
     
    Export citation  
     
    Bookmark  
  • Putting the ‘Experiment’ back into the ‘Thought Experiment’.Lorenzo Sartori - 2023 - Synthese 201 (2):1-36.
    Philosophers have debated at length the epistemological status of scientific thought experiments. I contend that the literature on this topic still lacks a common conceptual framework, a lacuna that produces radical disagreement among the participants in this debate. To remedy this problem, I suggest focusing on the distinction between the internal and the external validity of an experiment, which is also crucial for thought experiments. I then develop an account of both kinds of validity in the context of thought experiments. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Two epistemological challenges regarding hypothetical modeling.Peter Tan - 2022 - Synthese 200 (6).
    Sometimes, scientific models are either intended to or plausibly interpreted as representing nonactual but possible targets. Call this “hypothetical modeling”. This paper raises two epistemological challenges concerning hypothetical modeling. To begin with, I observe that given common philosophical assumptions about the scope of objective possibility, hypothetical models are fallible with respect to what is objectively possible. There is thus a need to distinguish between accurate and inaccurate hypothetical modeling. The first epistemological challenge is that no account of the epistemology of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Of stirps and chromosomes: Generality through detail.Charles H. Pence - 2022 - Studies in History and Philosophy of Science Part A 94 (C):177-190.
    One claim found in the received historiography of the biometrical school (comprised primarily of Francis Galton, Karl Pearson, and W. F. R. Weldon) is that one of the biometricians' great flaws was their inability to look past their population-focused, statistical, gradualist understanding of evolutionary change – which led, in part, to their ignoring developments in cellular biology around 1900. I will argue, on the contrary, that the work of the biometricians was, from its earliest days, fundamentally concerned with connections between (...)
    Download  
     
    Export citation  
     
    Bookmark