Switch to: Citations

References in:

Curry, Yablo and duality

Analysis 69 (4):612-620 (2009)

Add references

You must login to add references.
  1. What negation is not: Intuitionism and ‘0=1’.Roy T. Cook & Jon Cogburn - 2000 - Analysis 60 (1):5–12.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Paradox without Self-Reference.Stephen Yablo - 1993 - Analysis 53 (4):251-252.
    Download  
     
    Export citation  
     
    Bookmark   205 citations  
  • Truth and reflection.Stephen Yablo - 1985 - Journal of Philosophical Logic 14 (3):297 - 349.
    Many topics have not been covered, in most cases because I don't know quite what to say about them. Would it be possible to add a decidability predicate to the language? What about stronger connectives, like exclusion negation or Lukasiewicz implication? Would an expanded language do better at expressing its own semantics? Would it contain new and more terrible paradoxes? Can the account be supplemented with a workable notion of inherent truth (see note 36)? In what sense does stage semantics (...)
    Download  
     
    Export citation  
     
    Bookmark   74 citations  
  • Yablo's paradox and Kindred infinite liars.Roy A. Sorensen - 1998 - Mind 107 (425):137-155.
    This is a defense and extension of Stephen Yablo's claim that self-reference is completely inessential to the liar paradox. An infinite sequence of sentences of the form 'None of these subsequent sentences are true' generates the same instability in assigning truth values. I argue Yablo's technique of substituting infinity for self-reference applies to all so-called 'self-referential' paradoxes. A representative sample is provided which includes counterparts of the preface paradox, Pseudo-Scotus's validity paradox, the Knower, and other enigmas of the genre. I (...)
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  • Yablo’s Paradox and ω-Inconsistency.Jeffrey Ketland - 2005 - Synthese 145 (3):295-302.
    It is argued that Yablo’s Paradox is not strictly paradoxical, but rather ‘ω-paradoxical’. Under a natural formalization, the list of Yablo sentences may be constructed using a diagonalization argument and can be shown to be ω-inconsistent, but nonetheless consistent. The derivation of an inconsistency requires a uniform fixed-point construction. Moreover, the truth-theoretic disquotational principle required is also uniform, rather than the local disquotational T-scheme. The theory with the local disquotation T-scheme applied to individual sentences from the Yablo list is also (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • The Inconsistency of Certain Formal Logics.Alonzo Church & Haskell B. Curry - 1942 - Journal of Symbolic Logic 7 (4):170.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Patterns of paradox.Roy T. Cook - 2004 - Journal of Symbolic Logic 69 (3):767-774.
    We begin with a prepositional languageLpcontaining conjunction (Λ), a class of sentence names {Sα}αϵA, and a falsity predicateF. We (only) allow unrestricted infinite conjunctions, i.e., given any non-empty class of sentence names {Sβ}βϵB,is a well-formed formula (we will useWFFto denote the set of well-formed formulae).The language, as it stands, is unproblematic. Whether various paradoxes are produced depends on which names are assigned to which sentences. What is needed is a denotation function:For example, theLPsentence “F(S1)” (i.e.,Λ{F(S1)}), combined with a denotation functionδsuch (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • There Are Non-circular Paradoxes (But Yablo’s Isn't One of Them!).Roy T. Cook - 2006 - The Monist 89 (1):118-149.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Completing Sorensen's menu: A non-modal yabloesque Curry.J. C. Beall - 1999 - Mind 108 (432):737-739.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The inconsistency of certain formal logic.Haskell B. Curry - 1942 - Journal of Symbolic Logic 7 (3):115-117.
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  • Circularity and Paradox.Stephen Yablo - 2008 - In Thomas Bolander (ed.), Self-reference. Center for the Study of Language and Inf. pp. 139--157.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • The Elimination of Self-Reference: Generalized Yablo-Series and the Theory of Truth.P. Schlenker - 2007 - Journal of Philosophical Logic 36 (3):251-307.
    Although it was traditionally thought that self-reference is a crucial ingredient of semantic paradoxes, Yablo (1993, 2004) showed that this was not so by displaying an infinite series of sentences none of which is self-referential but which, taken together, are paradoxical. Yablo's paradox consists of a countable series of linearly ordered sentences s(0), s(1), s(2),... , where each s(i) says: For each k > i, s(k) is false (or equivalently: For no k > i is s(k) true). We generalize Yablo's (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • How to eliminate self-reference: a précis.Philippe Schlenker - 2007 - Synthese 158 (1):127-138.
    We provide a systematic recipe for eliminating self-reference from a simple language in which semantic paradoxes (whether purely logical or empirical) can be expressed. We start from a non-quantificational language L which contains a truth predicate and sentence names, and we associate to each sentence F of L an infinite series of translations h 0(F), h 1(F), ..., stated in a quantificational language L *. Under certain conditions, we show that none of the translations is self-referential, but that any one (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations