Switch to: References

Citations of:

Yablo’s Paradox and ω-Inconsistency

Synthese 145 (3):295-302 (2005)

Add citations

You must login to add citations.
  1. What theories of truth should be like (but cannot be).Hannes Leitgeb - 2007 - Philosophy Compass 2 (2):276–290.
    This article outlines what a formal theory of truth should be like, at least at first glance. As not all of the stated constraints can be satisfied at the same time, in view of notorious semantic paradoxes such as the Liar paradox, we consider the maximal consistent combinations of these desiderata and compare their relative advantages and disadvantages.
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  • In Defence of Radical Restrictionism.David Liggins - 2019 - Philosophy and Phenomenological Research 98 (1):3-25.
    Restrictionism is a response to the Liar and other paradoxes concerning truth. Restrictionists—as I will call proponents of the strategy—respond to these paradoxes by giving up instances of the schema -/- <p> is true iff p. -/- My aim is to show that the current unpopularity of restrictionism is undeserved. I will argue that, whilst cautious versions of the strategy may face serious problems, a radical and previously overlooked version of restrictionism provides a strong and defensible response to the paradoxes.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Reference and Truth.Lavinia Picollo - 2020 - Journal of Philosophical Logic 49 (3):439-474.
    I apply the notions of alethic reference introduced in previous work in the construction of several classical semantic truth theories. Furthermore, I provide proof-theoretic versions of those notions and use them to formulate axiomatic disquotational truth systems over classical logic. Some of these systems are shown to be sound, proof-theoretically strong, and compare well to the most renowned systems in the literature.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Valuing and believing valuable.Kubala Robbie - 2017 - Analysis 77 (1):59-65.
    Many philosophers recognize that, as a matter of psychological fact, one can believe something valuable without valuing it. I argue that it is also possible to value something without believing it valuable. Agents can genuinely value things that they neither believe disvaluable nor believe valuable along a scale of impersonal value.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Elimination of Self-Reference: Generalized Yablo-Series and the Theory of Truth.P. Schlenker - 2007 - Journal of Philosophical Logic 36 (3):251-307.
    Although it was traditionally thought that self-reference is a crucial ingredient of semantic paradoxes, Yablo (1993, 2004) showed that this was not so by displaying an infinite series of sentences none of which is self-referential but which, taken together, are paradoxical. Yablo's paradox consists of a countable series of linearly ordered sentences s(0), s(1), s(2),... , where each s(i) says: For each k > i, s(k) is false (or equivalently: For no k > i is s(k) true). We generalize Yablo's (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Alethic Reference.Lavinia Picollo - 2020 - Journal of Philosophical Logic 49 (3):417-438.
    I put forward precise and appealing notions of reference, self-reference, and well-foundedness for sentences of the language of first-order Peano arithmetic extended with a truth predicate. These notions are intended to play a central role in the study of the reference patterns that underlie expressions leading to semantic paradox and, thus, in the construction of philosophically well-motivated semantic theories of truth.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A Unified Theory of Truth and Paradox.Lorenzo Rossi - 2019 - Review of Symbolic Logic 12 (2):209-254.
    The sentences employed in semantic paradoxes display a wide range of semantic behaviours. However, the main theories of truth currently available either fail to provide a theory of paradox altogether, or can only account for some paradoxical phenomena by resorting to multiple interpretations of the language. In this paper, I explore the wide range of semantic behaviours displayed by paradoxical sentences, and I develop a unified theory of truth and paradox, that is a theory of truth that also provides a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Theories of Truth without Standard Models and Yablo’s Sequences.Eduardo Alejandro Barrio - 2010 - Studia Logica 96 (3):375-391.
    The aim of this paper is to show that it’s not a good idea to have a theory of truth that is consistent but ω-inconsistent. In order to bring out this point, it is useful to consider a particular case: Yablo’s Paradox. In theories of truth without standard models, the introduction of the truth-predicate to a first order theory does not maintain the standard ontology. Firstly, I exhibit some conceptual problems that follow from so introducing it. Secondly, I show that (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Gödelizing the Yablo Sequence.Cezary Cieśliński & Rafal Urbaniak - 2013 - Journal of Philosophical Logic 42 (5):679-695.
    We investigate what happens when ‘truth’ is replaced with ‘provability’ in Yablo’s paradox. By diagonalization, appropriate sequences of sentences can be constructed. Such sequences contain no sentence decided by the background consistent and sufficiently strong arithmetical theory. If the provability predicate satisfies the derivability conditions, each such sentence is provably equivalent to the consistency statement and to the Gödel sentence. Thus each two such sentences are provably equivalent to each other. The same holds for the arithmetization of the existential Yablo (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Ungroundedness in Tarskian Languages.Saul A. Kripke - 2019 - Journal of Philosophical Logic 48 (3):603-609.
    Several writers have assumed that when in “Outline of a Theory of Truth” I wrote that “the orthodox approach” – that is, Tarski’s account of the truth definition – admits descending chains, I was relying on a simple compactness theorem argument, and that non-standard models must result. However, I was actually relying on a paper on ‘pseudo-well-orderings’ by Harrison. The descending hierarchy of languages I define is a standard model. Yablo’s Paradox later emerged as a key to interpreting the result.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Yablo Without Gödel.Volker Halbach & Shuoying Zhang - 2017 - Analysis 77 (1):53-59.
    We prove Yablo’s paradox without the diagonal lemma or the recursion theorem. Only a disquotation schema and axioms for a serial and transitive ordering are used in the proof. The consequences for the discussion on whether Yablo’s paradox is circular or involves self-reference are evaluated.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A Comparative Taxonomy of Medieval and Modern Approaches to Liar Sentences.C. Dutilh Novaes - 2008 - History and Philosophy of Logic 29 (3):227-261.
    Two periods in the history of logic and philosophy are characterized notably by vivid interest in self-referential paradoxical sentences in general, and Liar sentences in particular: the later medieval period (roughly from the 12th to the 15th century) and the last 100 years. In this paper, I undertake a comparative taxonomy of these two traditions. I outline and discuss eight main approaches to Liar sentences in the medieval tradition, and compare them to the most influential modern approaches to such sentences. (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Equiparadoxicality of Yablo’s Paradox and the Liar.Ming Hsiung - 2013 - Journal of Logic, Language and Information 22 (1):23-31.
    It is proved that Yablo’s paradox and the Liar paradox are equiparadoxical, in the sense that their paradoxicality is based upon exactly the same circularity condition—for any frame ${\mathcal{K}}$ , the following are equivalent: (1) Yablo’s sequence leads to a paradox in ${\mathcal{K}}$ ; (2) the Liar sentence leads to a paradox in ${\mathcal{K}}$ ; (3) ${\mathcal{K}}$ contains odd cycles. This result does not conflict with Yablo’s claim that his sequence is non-self-referential. Rather, it gives Yablo’s paradox a new significance: (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Yablo’s Paradox in Second-Order Languages: Consistency and Unsatisfiability.Lavinia María Picollo - 2013 - Studia Logica 101 (3):601-617.
    Stephen Yablo [23,24] introduces a new informal paradox, constituted by an infinite list of semi-formalized sentences. It has been shown that, formalized in a first-order language, Yablo’s piece of reasoning is invalid, for it is impossible to derive falsum from the sequence, due mainly to the Compactness Theorem. This result casts doubts on the paradoxical character of the list of sentences. After identifying two usual senses in which an expression or set of expressions is said to be paradoxical, since second-order (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The No-No Paradox Is a Paradox.Roy T. Cook - 2011 - Australasian Journal of Philosophy 89 (3):467-482.
    The No-No Paradox consists of a pair of statements, each of which ?says? the other is false. Roy Sorensen claims that the No-No Paradox provides an example of a true statement that has no truthmaker: Given the relevant instances of the T-schema, one of the two statements comprising the ?paradox? must be true (and the other false), but symmetry constraints prevent us from determining which, and thus prevent there being a truthmaker grounding the relevant assignment of truth values. Sorensen's view (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Unwinding Modal Paradoxes on Digraphs.Ming Hsiung - 2020 - Journal of Philosophical Logic 50 (2):319-362.
    The unwinding that Cook, 767–774 2004) proposed is a simple but powerful method of generating new paradoxes from known ones. This paper extends Cook’s unwinding to a larger class of paradoxes and studies further the basic properties of the unwinding. The unwinding we study is a procedure, by which when inputting a Boolean modal net together with a definable digraph, we get a set of sentences in which we have a ‘counterpart’ for each sentence of the Boolean modal net and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Topological Approach to Yablo's Paradox.Claudio Bernardi - 2009 - Notre Dame Journal of Formal Logic 50 (3):331-338.
    Some years ago, Yablo gave a paradox concerning an infinite sequence of sentences: if each sentence of the sequence is 'every subsequent sentence in the sequence is false', a contradiction easily follows. In this paper we suggest a formalization of Yablo's paradox in algebraic and topological terms. Our main theorem states that, under a suitable condition, any continuous function from 2N to 2N has a fixed point. This can be translated in the original framework as follows. Consider an infinite sequence (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • In what sense is the no-no paradox a paradox?Ming Hsiung - 2021 - Philosophical Studies 179 (6):1915-1937.
    Cook regards Sorenson’s so-called ‘the no-no paradox’ as only a kind of ‘meta-paradox’ or ‘quasi-paradox’ because the symmetry principle that Sorenson imposes on the paradox is meta-theoretic. He rebuilds this paradox at the object-language level by replacing the symmetry principle with some ‘background principles governing the truth predicate’. He thus argues that the no-no paradox is a ‘new type of paradox’ in that its paradoxicality depends on these principles. This paper shows that any theory is inconsistent with the T-schema instances (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • VI—Nominalistic Adequacy.Jeffrey Ketland - 2011 - Proceedings of the Aristotelian Society 111 (2pt2):201-217.
    Instrumentalist nominalism responds to the indispensability arguments by rejecting the demand that successful mathematicized scientific theories be nominalized, and instead claiming merely that such theories are nominalistically adequate: the concreta behave ‘as if’ the theory is true. This article examines some definitions of the concept of nominalistic adequacy and concludes with some considerations against instrumentalist nominalism.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Structure of Paradoxes in a Logic of Sentential Operators.Michał Walicki - 2024 - Journal of Philosophical Logic 53 (6):1579-1639.
    Any language $$\mathcal {L}$$ L of classical logic, of first- or higher-order, is expanded with sentential quantifiers and operators. The resulting language $$\mathcal {L}^+\!$$ L +, capable of self-reference without arithmetic or syntax encoding, can serve as its own metalanguage. The syntax of $$\mathcal {L}^+$$ L + is represented by directed graphs, and its semantics, which coincides with the classical one on $$\mathcal {L}$$ L, uses the graph-theoretic concepts of kernels and semikernels. Kernels provide an explosive semantics, while semikernels generalize (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Circularity is Still Scary.Paula Teijeiro - 2012 - Análisis Filosófico 32 (1):31-35.
    Cook (forthcoming) presents a paradox which he says is not circular. I see no reasons to doubt the non-circularity claim, but I do have some concerns regarding its paradoxicality. My point will be that his proposal succeeds in offering a formalization, but fails in providing a formal paradox, at least of the same type and strength as the Liar. Cook (en prensa) presenta una paradoja que según él no es circular. No veo motivos para cuestionar la pretensión de no circularidad, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • ‘Sometime a paradox’, now proof: Yablo is not first order.Saeed Salehi - 2022 - Logic Journal of the IGPL 30 (1):71-77.
    Interesting as they are by themselves in philosophy and mathematics, paradoxes can be made even more fascinating when turned into proofs and theorems. For example, Russell’s paradox, which overthrew Frege’s logical edifice, is now a classical theorem in set theory, to the effect that no set contains all sets. Paradoxes can be used in proofs of some other theorems—thus Liar’s paradox has been used in the classical proof of Tarski’s theorem on the undefinability of truth in sufficiently rich languages. This (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Curry, Yablo and duality.Roy T. Cook - 2009 - Analysis 69 (4):612-620.
    The Liar paradox is the directly self-referential Liar statement: This statement is false.or : " Λ: ∼ T 1" The argument that proceeds from the Liar statement and the relevant instance of the T-schema: " T ↔ Λ" to a contradiction is familiar. In recent years, a number of variations on the Liar paradox have arisen in the literature on semantic paradox. The two that will concern us here are the Curry paradox, 2 and the Yablo paradox. 3The Curry paradox (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Yabloesque paradox in epistemic game theory.Can Başkent - 2018 - Synthese 195 (1):441-464.
    The Brandenburger–Keisler paradox is a self-referential paradox in epistemic game theory which can be viewed as a two-person version of Russell’s Paradox. Yablo’s Paradox, according to its author, is a non-self referential paradox, which created a significant impact. This paper gives a Yabloesque, non-self-referential paradox for infinitary players within the context of epistemic game theory. The new paradox advances both the Brandenburger–Keisler and Yablo results. Additionally, the paper constructs a paraconsistent model satisfying the paradoxical statement.
    Download  
     
    Export citation  
     
    Bookmark  
  • Buttresses of the Turing Barrier.Paolo Cotogno - 2015 - Acta Analytica 30 (3):275-282.
    The ‘Turing barrier’ is an evocative image for 0′, the degree of the unsolvability of the halting problem for Turing machines—equivalently, of the undecidability of Peano Arithmetic. The ‘barrier’ metaphor conveys the idea that effective computability is impaired by restrictions that could be removed by infinite methods. Assuming that the undecidability of PA is essentially depending on the finite nature of its computational means, decidability would be restored by the ω-rule. Hypercomputation, the hypothetical realization of infinitary machines through relativistic and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • ω-circularity of Yablo's paradox.Ahmet Çevik - forthcoming - Logic and Logical Philosophy:1.
    In this paper, we strengthen Hardy’s [1995] and Ketland’s [2005] arguments on the issues surrounding the self-referential nature of Yablo’s paradox [1993]. We first begin by observing that Priest’s [1997] construction of the binary satisfaction relation in revealing a fixed point relies on impredicative definitions. We then show that Yablo’s paradox is ‘ω-circular’, based on ω-inconsistent theories, by arguing that the paradox is not self-referential in the classical sense but rather admits circularity at the least transfinite countable ordinal. Hence, we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Eliminating Self-Reference from Grelling’s and Zwicker’s Paradoxes.José Martínez Fernández & Jordi Valor Abad - 2014 - Theoria: Revista de Teoría, Historia y Fundamentos de la Ciencia 29 (1):85.
    The goal of this paper is to present Yabloesque versions of Grelling’s and Zwicker’s paradoxes concerning the notions of “heterological” and “hypergame” respectively. We will offer counterparts of these paradoxes that do not seem to involve self-reference or vicious circularity.El objetivo de este artículo es ofrecer versiones de las paradojas de Grelling y de Zwicker inspiradas en la paradoja de Yablo. Nuestras versiones de estas paradojas no parecen involucrar ni autorreferencia ni circularidad viciosa.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Yablo Paradox: An Essay on Circularity By Roy T. Cook.David Ripley - 2015 - Analysis 75 (3):523-525.
    The Yablo Paradox (Cook 2014) is an examination of, well, the Yablo paradox. For space reasons, I’ll assume you’re familiar with the paradox already (sorry!); i.
    Download  
     
    Export citation  
     
    Bookmark  
  • Eliminating Self-Reference from Grelling's and Zwicker's Paradoxes.José Martínez Fernández & Jordi Valor - unknown
    The goal of this paper is to present Yabloesque versions of Grelling’s and Zwicker’s paradoxes concerning the notions of “heterological” and “hypergame” respectively. We will offer counterparts of these paradoxes that do not seem to involve any kind of self-reference or vicious circularity.
    Download  
     
    Export citation  
     
    Bookmark  
  • Minimalism, Reference, and Paradoxes.Picollo Lavinia - 2016 - In Lavinia Picollo (ed.), The Logica Yearbook 2015.
    The aim of this paper is to provide a minimalist axiomatic theory of truth based on the notion of reference. To do this, we first give sound and arithmetically simple notions of reference, self-reference, and well-foundedness for the language of first-order arithmetic extended with a truth predicate; a task that has been so far elusive in the literature. Then, we use the new notions to restrict the T-schema to sentences that exhibit "safe" reference patterns, confirming the widely accepted but never (...)
    Download  
     
    Export citation  
     
    Bookmark