Switch to: Citations

Add references

You must login to add references.
  1. A proof-theoretic analysis of collection.Lev D. Beklemishev - 1998 - Archive for Mathematical Logic 37 (5-6):275-296.
    By a result of Paris and Friedman, the collection axiom schema for $\Sigma_{n+1}$ formulas, $B\Sigma_{n+1}$ , is $\Pi_{n+2}$ conservative over $I\Sigma_n$ . We give a new proof-theoretic proof of this theorem, which is based on a reduction of $B\Sigma_n$ to a version of collection rule and a subsequent analysis of this rule via Herbrand's theorem. A generalization of this method allows us to improve known results on reflection principles for $B\Sigma_n$ and to answer some technical questions left open by Sieg (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • (1 other version)Induction rules, reflection principles, and provably recursive functions.Lev D. Beklemishev - 1997 - Annals of Pure and Applied Logic 85 (3):193-242.
    A well-known result states that, over basic Kalmar elementary arithmetic EA, the induction schema for ∑n formulas is equivalent to the uniform reflection principle for ∑n + 1 formulas . We show that fragments of arithmetic axiomatized by various forms of induction rules admit a precise axiomatization in terms of reflection principles as well. Thus, the closure of EA under the induction rule for ∑n formulas is equivalent to ω times iterated ∑n reflection principle. Moreover, for k < ω, k (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • On Σ1‐definable Functions Provably Total in I ∏ 1−.Teresa Bigorajska - 1995 - Mathematical Logic Quarterly 41 (1):135-137.
    We prove the following theorem: Let φ be a formula in the language of the theory PA− of discretely ordered commutative rings with unit of the form ∃yφ′ with φ′ and let ∈ Δ0 and let fφ: ℕ → ℕ such that fφ = y iff φ′ & < xK). Here I ∏math image1− denotes the theory PA− plus the scheme of induction for formulas φ of the form ∀yφ′ with φ′ ∈ Δ0.
    Download  
     
    Export citation  
     
    Bookmark   6 citations